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SECTION A: Answer ALL questions in this section

Al *
Consider the motion of a single particle under the influence of a force F.

(i) Write down the expression for the work W[C},] done by the force F when the particle moves
from the initial position r; to the final position ry along a certain path Ci. {3l

(ii) Define what a conservative force is, and write down the expression for the energy of the
particle assuming that F is conservative. Show that the time derivative of the energy calculated
for a solution of the.equations of motion is zero. [5]

(iii) Again assuming that the force F is conservative, show that the work done by F as the
particle moves from position r; to position r, only depends on the initial and final positions
but not on the path Cj, joining them. [4]

A2.

For each of the following three-dimensional mechanical systems, describe in words what are the
conserved quantities, and explain what are the corresponding Noether symmetries resp0n51b1e
for their conservation.

(i) Free particle. [3]

(ii) Particle moving in a potential V(z, 2), i.e. a potential independent of the coordinate y of
the particle and of time, but otherwise generic. [4]

((iii) Particle moving in a potential with spherical symmetry, V = V([r|), where r := (z,, 2)
denotes, as usual, the position vector of the particle. [4]

(tv) Particle moving in a gravitational field oriented along the z axis, and constrained to move
on the surfacé of a cylinder with symmetry axis coincident with the z axis. [4]
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A3,

=

Consider the motion of a particle with one degree of freedom parameterised by a coordinate ¢,
in a potential V(q).

(i) Define the Lagrangian of the particle L{g, ¢), and give the momentum conjugate to ¢. [4].
(i1) Eic_plain how the Hamiltonian' H(p, g) is obtained from the Lagrangian.. [4]

(iii)_ Derive the Hami:lton' équations for the partlcle . (5]
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SECTION B: Answer ONLY TWO QUESTIONS from this section

B1.

Consider the motion of a single particle of mass m subject to a central potential V'{r}, where r
is the position vector of the particle in an inertial system (%, §, £) with origin at O, and 7 := |r]|.

(i) Prove that the angular momentum L of the particle about the point O is a conserved
quantity. [7]

(ii) The direction of the constant vector L determines the plane of the orbit. Choosing. plane
polar coordinates (r, ¢) on this plane as generalised coordinates, write down the Lagrangian of
the system. (5]

(ili) Using the Lagrange equations, prove that the momentum p; associated to the coordinate
¢ is conserved. What physical quantity does it correspond to? (5]

(iv) Write down the expression for the energy of the particle, and use the conservation of py to
eliminate ¢ from this expression, thus giving the energy in the form

E(r,7) = %m# + Vealr) .

Calculate the one-dimensional effective potential Veg(r). [7]

(v) For the case of the gravitational potential V() = —k/r, k > 0, sketch the graph of thé
effective potential Vog(r), and determine the position 7, of its minimum. What kind of orbit
does ‘this minimum correspond to? (6]
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B2.

A particle of mass m is constrained to move on the surface of the inverted circular cone 6f
opening semi-angle o represented in the figure. Gravity acts as usual along the vertical direction.

(i) How many degrees of freedom does the system have?’ : (4]

(ii) Picking spherical coordinates, write down the Lagrangian of the system and the Lagrange
equations. {10]

(iii) Show that the momentum pg associated to the azimuthal angle ¢ is equal to the z-component
L, of the angular momentum. What is the symmetry responsible for its conservation? 8]

(iv) By eliminating the coordinate ¢ and its time derivative, obtain the energy as a function of
r and 7 only, in the form E(r,7) = (1/2)ms? + V.g(r). Obtain this effective one-dimensional
potential Vcg(r), and calculate the value r, of r which minimises it. Explain what physical

situation the minimum of the potential corresponds to. (8]
A
4
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B3.
Consider the motion of a particle of mass m described by the following Lagrangian

1
L = 5m;(:‘c2 + 9%+ 2%) + Ek(zy —yi) .

(i) Write down the Lagrange equations, and use them to show that the three quantities
I, = mz—2ky, I, = my+2kz, I, == mz,
are conserved. (8]

(ii) Show that the Lagrangian L is exactly invariant (i.e. JL = 0) under a translation along the
Z axis, and invariant under translations along the Z and ¢ axis up to a total time derivative of
a function. {9]

(iii) Show that L is invariant under a rotation by an infinitesimal angle € about the 3 axis,
0 = €y, by - = —€x .
Show that the_ corresponding Noether invariant is given by
T = mizy = ya) + k(z® +¢%) .
| o
(iv) Use the results derived in point (i) above to show that the quantity vy := & + iy satisfies

the equation

'dv = —=iwv
dt.l.“" g L

where w := 2k/m. [4]
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B4.

A rigid rod of length 2L has its lower end in contact with a horizontal plane. The mass of
the rod is equal to m, and its mass density is uniform. Gravity acts as usual in the vertical
direction. The rod is initially at an angle o with respect to the vertical (see the figure), when
it is released from rest. The motion is constrained to take place in the vertical plane (Z,%).

(i) How many degrees of freedom does the system have? (6]

(ii) Calculate'the moment of inertia of the rod with respect to an axis orthogonal to the rod
and passing through its centre of mass G, [81

(iti) Choosing appropnate generalised coordinates, write down the Lagrangian of the system.

[10]

(iv) Show that in the subsequent motion after the rod is released from rest, the z-coordinate

X of the centre of mass G remains constant. | (6]
y A

®
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FORMULA SHEET

Plane polar ¢oordinates:.

i réd,
2o 2R

Spherical coordinates:-
r = 71T,

i+t 4+ 106 + r5in0
72+ 2 (6 + sin®04°) .

r =

2 —_

“End: of Examination Paper -
Dr G Travaglini
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