
Section 5  DRAFT Mechanical Properties of Materials 
 
Interatomic Potentials 
 
Atoms attract each other. The evidence for this is that all 
substances become liquid or solid at sufficiently low temperatures.  
So if the potential energy of a pair of atoms is zero at infinite 
separation, it becomes negative as they approach each other. 
 
Atoms have sizes and do not interpenetrate (since solids have finite 
volume).  So they must repel at short enough separations. The 
simplest repulsive potential is a “hard sphere” potential, 
 

 
 
 
 
 However, realistically, atoms are not infinitely rigid.  Analytic 
approximations include the Lennard-Jones, or 12-6 potential,  
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and the Morse potential, 
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In these plots the constants have been chosen to give the 
same equilibrium separation (1) and the same well-depth 
(1), and the third parameter in the Morse potential is chosen 
to give the same curvature at the bottom.  
 
From the interatomic potential, we can immediately obtain 
a number of interesting properties of any material, 
including:  
 
 Theoretical strength  
 Hooke’s Law 
 Elastic stiffness moduli  
 Thermal Expansion 
 



First, let us put some numbers in. Typical atomic diameters 
are about 3Å = 0.3nm = 310–8cm, so there are about 
(⅓108)3 = ~41022cm–3. A typical metal weighs say 8g 
cm–1, so a typical atom weighs about 210–22g or about 
210–25kg.   
 A typical chemical bond energy is ~eV (we know this 
because photochemistry exists, and because chemical 
batteries give a volt or two.)  This is ~1.610–19J. 
So our interatomic potential in suitable units is  

 
 
The equilibrium separation is at the bottom, at r = 2Å.  
Theoretical Strength: The force is maximum at the 
inflection point, at r = 2.17Å.  This force will tear the 
atoms apart.  This defines the theoretical strength. The 
force is D[U,r] at r = 2.17, which is 0.9 eV/Å = 0.9 
(1.610–19)  1010Jm–1 = 1.4nN.    
 
 This force applied on a 3Å square is a stress of  = 
F/A = 1.61010Pa = 16GPa = 160 tonnes per square cm.  
This is vastly beyond the strength of any real materials.   



 
Atomic Vibration Frequency:  The bottom of the potential 
U(r) approximates to the parabola U(x) = ½kx2, where x is a 
small displacement from the equilibrium potential, and the 
curvature  k = 8eVÅ–2 = 128Jm–2.  Taking the mass as 
above, the vibration frequency in this harmonic 
approximation (see W&O) is  
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This frequency corresponds to a wavelength of light of 
about 60m ~ 160cm–1  – far infra-red – and is therefore 
called “optical”.  Of course materials can also sustain 
lower, “acoustic” vibrational frequencies (see W&O).   

 
Hooke’s Law:  First published 1660, as an anagram of the 
Latin, Ut tensio, sic vis.  “As the extension, so the force, or 
F = kx.   
 
A force constant k (Nm–1) is appropriate for describing a 
structure, such as a coil spring. For a material such as 
rubber or steel, we define material constants, and stress 
and strain.   
 
Engineering stress and strain: For a wire under tension, 
the stress is the force per unit area,  = F/A Pa.   
 The strain is the fractional extension,  = L/L. 
  
Young’s Modulus:  Hooke’s Law relates the stress and 
strain by a modulus of elasticity, here the Young’s modulus 
Y:   = Y.  Young’s modulus is often called E. 



 
Other engineering quantities: Shear stress, shear strain, 
shear modulus G.  Poisson’s ratio  = – ||/^, typically  = 
⅓.Bulk modulus B, given by P = B V/V, and often called 
K. See, e.g., http://en.wikipedia.org/wiki/Elastic_modulus 
 
Lennard-Jones potential, with the parameters above:  
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F   for small x, i.e. for small displacements 

from the equilibrium position, with k = 8eVÅ–2.  This 
converts to  = F/(3Å)2 = k/(3Å)2  (3Å) = Y, so Y = 8/3 
eVÅ–3 = 8  1.610–19 / (310–10)3 = 51010Jm–3 = 50GPa. 
Y = 50GPa  is in the right ballpark.  
 The bulk modulus requires the stress P to be applied in 
all directions, and the volumetric strain V/V is 3L/L, so 
in this approximation (neglecting Poisson’s ratio), B = ⅓Y.   
 
Engineering stress and strain, and moduli and Poisson’s 
ratio, are a mess (too many constants and complicated 
relationships), and only valid for infinitesimal strain.



Stress and Strain in Physics and Mathematics: Stress is 
force per unit area. Force is a vector, and the unit area is a 
vector (the unit normal). So stress is a higher-rank object, a 
tensor.  Scalars are zeroth-rank tensors; vectors are first-
rank tensors, and stress is a second-rank tensor.  
 
That is, a force in the x-direction, Fx, may be applied to a 
surface whose normal is in the x-direction – this results in a 
normal stress xx. Or it may be applied to surfaces whose 
normals are in the y- or z- directions – this gives the shear 
stresses xy and xz. Thus tensor stress has nine 
components,  
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Similarly, the x-face of a cube may be displaced in the x, y 
or z directions, so strain is also a second-rank tensor, 
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Each of the nine stress components depends on each of the 
nine strain components, so Hooke’s Law may be written as,  

klijklij c   

where c  is a fourth-rank tensor (3333) with 81 
components, the elastic stiffness constants.  
 



Fortunately, the requirement of static equilibrium and 
symmetry arguments reduce the number of independent 
components and elastic constants enormously. Static 
equilibrium requires ij = ji, and for an isotropic material 
(rubber, steel, etc) there are only two independent cijkl, not 
81.  
 To go any further with tensor stress and strain, and to 
handle finite strains properly, requires the same maths – 
tensor analysis – as General Relativity.  
 
Voigt Notation:  A step back towards engineering methods 
was introduced by Voigt. Since there are only six 
independent stress components, Voigt labelled them 1-6, as 
xx Ø 1, yy Ø 2, zz Ø 3, yz Ø 4, zy Ø 5, xy Ø 6. Then 
Hooke’s Law is written as  
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or 
JIJI c   

(we use capital I and J for Voigt subscripts 1-6, to 
distinguish from tensor subscripts i, j, k, l that are 1-3). 
  The zero values of cIJ come from fundamental 
symmetry arguments. The re-appearance of the subscripts 
1, 2 and 4 comes from assuming cubic symmetry (xªyªz). 
And in isotropic (spherical) symmetry, c44 = ½(c11 – c12).  



We conclude by calculating Young’s modulus using this 
version of Hooke’s Law:  
 
A wire in tension has only one stress component, 1. It has 
a longitudinal tensile strain, 1.  Poisson’s ratio gives its 
lateral contraction, the two strains 2 = 3 = – 1. So 
Hooke’s Law becomes,     
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Each line of this matrix equation can be read off as a simple 
equation. The second or third lines give, 
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Similarly, we may find B = ⅓(c11 + 2c12). 



Thermal Expansion:  Thermal energy is average kinetic 
energy per atom (300K ª 25meV per degree of freedom). 
This lifts the material up the potential energy curve.   
 
Very approximately, we solve for the maximum and 
minimum separations as a function of energy above the 
minimum.  Averaging the two gives the average separation:  

 
 

We see that the thermal expansion is close to linear, and is 
about a 1% expansion for 1000K.  That is, the thermal 
expansion coefficient  is about 10–5K–1 (compare actual 
values of  1.710–5 for copper, 1.1810–5 for iron).  
 
Quantum mechanics will show later why Ø 0 as TØ 0. 
 
    Thermal expansion is often attributed to atoms jiggling 

about at high temperature.  This calculation shows that 
this is not true. It is due to atoms jiggling about at high 
temperature in an anharmonic potential. 


