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Question 1

a. Consider a slab of dielectric placed in an external static electric field. The electric
dipole moment of the bound charges can be represented macroscopically by a po-
larization vector P. What does P represent? How is P related to the density of the
bound charges ρb. [2]

b. Now suppose you switch on a uniform and static magnetic field. What does the
magnetization vector M represent? How is it related to the current of bound charges
in the dielectric? [2]

c. Use the relation between P and ρb and the relation between M and Jb that you
wrote in parts a. and b. respectively to show that in the case of stationary electric
and magnetic fields the Gauss and Ampére laws read:

∇ · D(x) = ρ(x)free and ∇× H = J(x)free,

where, for a linear and isotropic media, D = ε0E + P and H = B
µ0

− M. [3]

d. Describe how the configuration of charges and fields in the matter changes, with
respect to the electrostatic and magnetostatic cases, when we place the dielectric
in time varying electric and magnetic fields. Show that in this case the Maxwell
equations in the matter and in the presence of sources are:

∇ · B = 0, ∇× E = −
∂B

∂t
, ∇ · D = ρfree, ∇× H = Jfree +

∂D

∂t
.

[5]

e. Consider a region of space V bounded by a closed surface S, and also let C be a
closed contour in space with an open surface S ′ spanning the contour. Explaining
the notation used, integrate over these region the Maxwell equations in the matter,
and rewrite them as:

∫

S

D · dS =

∫

V

ρdV

∫

C

H · dl =

∫

S′

(

J +
∂D

∂t

)

· dS′

∫

S

B · dS = 0

∫

C

E · dl = −

∫

S′

∂B

∂t
· dS′

[4]

f. Consider two regions, labelled by i = 1, 2, containing different linear media, which
meet at an infinite two-dimensional boundary, with unit normal n̂ to the boundary.
Let Ei, Bi, Di, Hi for i = 1, 2 label the electromagnetic fields in the two regions.
Using a suitable small, shallow cylinder, straddling the boundary between the two
regions, with surface charge density σ, derive the boundary conditions

(D2 − D1) · n̂ = σ, (B2 − B1) · n̂ = 0

from two of the integral equations above.
Now considering a suitable small rectangle straddling the boundary, with current
density K on the surface of the rectangle, derive the further boundary conditions

n̂ × (H2 − H1) = K n̂ × (E2 − E1) = 0

[6]
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Question 2
In the Lorentz gauge, the equation for the vector potential is:

�A(x, t) = −µ0J(x, t). (1)

a. Integrate the equation (1) with
∫ +∞

−∞
eiωtdt to obtain the Fourier transformed equa-

tion
(

∇2 + k2
)

A(x, ω) = −µ0J(x, ω)

What is the relation between k and ω? [3]

b. Suppose that there exists a Green function Gk(x,x
′) satisfying

(

∇2 + k2
)

Gk(x,x
′) = −4πδ(3)(x − x′).

Write an integral representation for A(x, ω) in terms of the Gk(x,x
′) and of the

current density J(x, ω) and show that this satisfies (1). [3]

c. Explain why you can assume thatGk(x,x
′) is function only of the distance r = |x − x′|

and, using polar spherical coordinates and considering the cases r 6= 0 and r → 0
separately, show that an expression for Gk(r) is given by the following combination

of the two particular solutions G
(±)
k (r) = e±ikr

r
:

Gk(r) = A
eikr

r
+B

e−ikr

r
with A+B = 1

[7]

d. The time-dependent Green functions obtained from G
(±)
k (r) are:

G(±)(x, t;x′, t′) =
1

2π

∫ +∞

−∞

e±ik|x−x′|−iω(t−t′)

|x − x′|
dω.

Introduce a suitable definition of A(x, t) in terms of G(±)(x, t;x′, t′) and use this
expression to write the retarded and advanced vector potentials, and explain their
physical significance. [7]
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Question 3

a. In the derivation of scattering of sunlight from air molecules the equation relating
the electric displacement field D(x) to the scatterer s(x)

(

∇2 + k2
)

D(x) = s(x)

has solution

D(x) = D0(x) −
1

4π

∫

d3y
eik|x−y|

|x − y|
s(y) (2)

where D0 is a solution of the associated homogeneous equation and k is the wave
number of a plane wave propagating along the direction k = kn̂. Explain the
derivation of the solution (2) using the retarded Green function G

(+)
k (|x − y|) =

eik|x−y|

|x−y|
. Show that in the far zone, where r >> d, where d are the linear dimensions

of the scatterer, you can expand |x−y| in powers of |y|
r

to get the simplified solution:

D(x) = D0(x) −
eikr

4πr

∫

d3yeikn̂·ys(y). (3)

[7]

b. Neglecting the magnetization effects, one can write s(x) = −∇ ×∇ × P, where P
is the polarization vector. Explain how the Born approximation leads to

P(x) = δεr(x)D0ε̂0e
ikn̂0·x

for an incident wave D0 = D0ε̂0e
ikn̂0·x, where δεr(x) = δε(x)

ε0
is the relative deviation

of the electric permittivity from the empty space value ε0. [7]

c. Deduce that in the Born approximation and in the far zone the scattered part of
the displacement field in (3) takes the form

−
D0e

ikr

r

k2

4π

∫

d3yeiq·yn̂ × n̂ × ε̂0 δεr(x)

. [6]
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Question 4
Consider the Maxwell equations in a vacuum with sources:

∇ · B = 0, ∇× E +
∂B

∂t
= 0, ∇ · E =

ρ

ε0
, ∇× B = µ0ε0

∂E

∂t
+ µ0J (4)

a. Show that expressing the electric and magnetic field in term of a scalar and a vector
potential φ and A as

E = −∇φ−
∂A

∂t
and B = ∇× A

the two homogeneous Maxwell equations in (4) are automatically solved and that
the two inhomogeneous ones reduce to:

∇2φ+
∂

∂t
∇ · A = −

ρ

ε0
(5a)

∇2A −
1

c2
∂2A

∂t2
−∇

(

∇ · A +
1

c2
∂φ

∂t

)

= −µ0J (5b)

[4]

b. Show that the electric and magnetic fields are unchanged if we perform the following
gauge transformations on the potentials:

φ −→ φ−
∂χ

∂t
(6a)

A −→ A + ∇χ, (6b)

where χ(x, t) is any scalar function of x and t. [4]

c. Define the Lorentz gauge fixing condition, and rewrite the Maxwell equations (5) in
this gauge. Use this result to explain why the Lorentz gauge is also called radiation

gauge. [4]

d. Consider the Lorentz covariant notation and rewrite the Maxwell equations in (5)
in term of the four-potential Aµ =

(

φ

c
,A

)

.
Rewrite the gauge transformations (6) in terms of Aµ.
How does the Lorentz gauge condition read in this case? [4]

e. The Maxwell equations in terms of the electromagnetic Field Strength are:

∂µF
µν = µ0j

ν and ∂µFνλ + ∂νFλµ + ∂λFµν = 0.

Show that the potential representation Fµν = ∂µAν − ∂νAµ automatically satisfies
the second of these equations. [4]
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Question 5
In the presence of sources the Lagrangian density for the electromagnetic field is:

L = −
1

4µ0
F αβFαβ − jαA

α

a. Show that the Euler-Lagrange equations:

∂µ

∂L

∂∂µAν

−
∂L

∂Aν

= 0

are ∂µF
µν = µ0j

ν. [4]

b. The canonical stress tensor expressed in terms of the Lagrangian density L is:

T ν
µ =

∂L

∂∂νAα

∂µAα − δν
µL

Use this definition to prove that ∂νT
ν
µ = 0, then derive an expression for T ν

µ in terms
of the tensors F and A. [4]

c. Show that in the absence of sources the canonical stress tensor T µν differs from the
symmetric stress tensor

Θµν = −
1

µ0

[

F αµF ν
α −

1

4
ηµνF αβFαβ

]

by a total derivative. [4]

d. Show that

Θ00 =
1

2
ε0(E

2 + c2B2) Θ0i =
1

cµ0
(E × B)i

and give the physical significance of these quantities. [4]

e. Show that in the presence of sources ∂µΘµν = jµF ν
µ . Then show that for ν = 0 this

equation becomes the Poynting equation:

∂E

∂t
+ ∇ · P = −E · J, (7)

where E is the energy density of the electromagnetic field and P is the Poynting
vector. Then explain the physical significance of (7). [4]
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FORMULA SHEET

a × (b × c) =(a · c)b − (a · b)c,
∇ · (ψa) = a · ∇ψ + ψ∇ · a,
∇× (ψa) = (∇ψ) × a + ψ(∇× a),
∇× (∇× a) = ∇(∇ · a) −∇2a,
∇

(

ψ(r)
)

= nψ′(r).

Metric:

ηαβ =

{+1 if α = β = 0
−1 if α = β = 1, 2, 3
0 if α 6= β

‖F αβ‖ =









0 −E1/c −E2/c −E3/c
E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0









.

In spherical coordinates (r, θ, φ), with corresponding unit coordinate vectors (r̂, θ̂, φ̂), for
a vector field A with components (Ar, Aθ, Aφ),

∇× A = r̂ 1
rsinθ

(

∂
∂θ

(Aφsinθ) −
∂Aθ

∂φ

)

+ θ̂
(

1
rsinθ

∂Ar

∂φ
− 1

r
∂
∂r

(rAφ)
)

+φ̂1
r

(

∂
∂r

(rAθ) −
∂Ar

∂θ

)

and for a scalar field G(r, θ, φ)

∇2G =
1

r

∂2

∂r2
(rG) +

1

r2 sin θ

∂

∂θ

(

sin θ
∂G

∂θ

)

+
1

r2 sin2 θ

∂2G

∂φ2
.
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