
Topic 9: Macroscopic systems

Recap

1. Early stages we looked at single oscillations, which would involve oscillation about a 
mean or equilibrium point. Time dependence by no spatial dependence.

2. We introduced first the concept of damping, namely energy loss through the vibration.

3. We introduced second the concept of forcing, where you feed in energy. Key result was 
that energy absorption increases closed to the natural resonant frequencies. We 
combined damping with forcing in order to avoid infinity amplitudes that we know do 
not exist, although experience tells us that there are cases where hitting resonance gives 
huge amplitudes. The concepts of damping and forcing apply to all types of vibration, but 
going forward we do not do damping again, and we only do forcing for simpler systems. 
But the principles work going forward.

4. The next stage was coupled oscillators with some tethering, so again we got time 
dependence but no spatial dependence. We looked again at forcing, and found some 
interesting dependence of amplitudes on frequency.

5. We understood the concept of normal modes, where each mode represents a specific 
phase relationship between displacements. Normal modes are the natural vibrations. One 
key point is that if we represent the displacements in terms of normal modes, and then 
compute the potential and kinetic energy, we find that the normal modes represent the 
combination of displacements such that the energy written in terms of normal modes has 
no term corresponding to two normal mode amplitudes. We call this orthogonality.

6. We then looked at multiple coupled systems. We looked in detail at chains of balls with 
both ends connected, and we guessed that the normal modes are the sinusoidal functions 
with nodes at each ends. The number of normal modes is equal to the number of objects, 
and we add modes with wavelengths = length/n, where n is the order and with all values 
between 1 and the number of objects. These modes are called standing waves because 
they don’t move.

7. Last time we removed the ends of the medium. This allowed us to set up a number of new 
concepts.

8. Concept 1: the wave equation with spatial extent:

∂2u
∂t 2

= K
ρ
∂2u
∂x2

= c2 ∂
2u

∂x2

9. Solutions were the travelling wave solutions

u(x,t) = u0 exp i(kx −ωt)( )

10.We have the same angular frequency to describe the time dependence, but we now have 
the new quantity called the wave vector, whose value is 2π/wavelength. Wavelength is to 
space what the period is to time, namely the distance or time over which the wave 
repeats.
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11. In three dimensions, the wave vector is normal to the wave front, and gives the direction 
in which the wave travels, in addition to providing the information on the wavelength.

12.The form of the above solution means that the maxima move forward in space with a 
velocity equal to vg =ω / k , which is called the “phase velocity”. It is defined in this way. 

If you have a train of waves, the phase velocity gives the velocity at which the which the 
front moves forward.

13.We analysed a simple model – chain of atoms with free ends – and found that travelling 
waves provide a good solution. We obtained the angular frequency for any wave vector, 
and found that the angular frequency was only strictly proportional to wave vector in the 
limit of small wave vector. At higher wave vector we found that he angular frequency 
started to dip.

14.The case where frequency is not proportional to wave vector is called “dispersion”.

15.The graph of angular frequency vs wave vector is called the “dispersion curve”.

16.At the limit of wavelength = twice repeat, we found that the graph of angular frequency 
was a maximum, with the slope = 0 (draw dispersion curve for reminder). Note that in a 
crystal the wave length spans the range from the size of the crystal down to twice an 
atomic bond length.

17.The differential ∂ω / ∂k = 0  at this point. 

18.This differential is called the “group velocity”. It is the velocity at which a wave envelope 
moves. It is often usually the velocity at which the energy flows.

19.Consider a localised distribution. This is made up of many waves that all have a 
maximum at the position of the disturbance (draw picture and highlight the idea that the 
localised disturbance can be defined as a superposition of waves via the Fourier 
transform).

20. If you have a chain with two types of atoms, you get similar travelling wave solutions, but 
now in-phase and out-of-phase solutions; acoustic and optic modes. The optic modes will 
not have zero frequency at zero wave vector.

21. In a crystal you get all modes excited. The vibrations move the atoms from their 
equilibrium positions, so that the Amplitude is proportional to temperature, and to the 
inverse of the square of the frequency. Because of the dispersion, the pattern of atomic 
motions never repeats. The motion looks chaotic but in reality is fully deterministic and 
we now understand the solutions.

Example of wave-particle duality

Consider a particle of mass m. It’s momentum and kinetic energy are

p = mv ; E = 1
2
mv2 = p2

2m

From wave-particle duality we can write the momentum as
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p = h

λ
= h
2π

× 2π
λ

= k

It follows that the energy can be written as

 
E = 

2k2

2m
≡ hf = ω

In this case the phase velocity is not very interesting. The group velocity though is obtained 
as

 

dω
dk

= 1

2k
m

= p
m

= v

So in wave particle duality, the group velocity gives the velocity of the particle. Group 
velocity is often associated with the velocity of the energy flow, which is going to be the 
velocity of the particle.

Waves in macroscopic systems

1. Longitudinal vibrations of a rod

Consider a small slice at position x and thickness Δx. This displaces by a distance u, but also 

stretches by an amount Δu.

So the average strain is Δu / Δx

And the average stress is YΔu / Δx

So move along one slice, and you have have 

stress at position x + Δx = YΔu / Δx + ∂
∂x

YΔu / Δx( )

Cross sectional area is A. We can thus express the force at either end of a slice in the 
infinitesimal limit as

F1 = AY
∂u
∂x

F2 = AY
∂u
∂x

+ AY ∂2u
∂x2

Δx

F2 − F1 = AY
∂2u
∂x2

Δx

Now we have to think about the acceleration of the matter in the slab. Density is ρ, so mass 
is ρΔxA. Thus we have 
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AY ∂2u
∂x2

Δx = ρAΔx ∂
2u
∂t 2

⇒ Y
ρ
∂2u
∂x2

= ∂2u
∂t 2

With the velocity of sound given as the square root of Y/ρ. No surprises since this is not so 
different from the chain model.

Example of aluminium

Y = 6 x 1010 GPa

ρ = 2700 kg/m2

v = 4714 m/s

Note that the same analysis will actually hold also for a fluid medium for longitudinal 
motions.

But if we have a bar fixed at both ends, perhaps we don’t need the travelling waves after all, 
but instead need a standing wave.

Bar has length L and from before we note that it will have standing waves of the form

u(x,t) = u0 exp i(kx −ωt)( ) + u0 exp i(kx +ωt)( )

k = 2π
λ

= 2πn
2L

= πn
L

u(L,t) = u0 exp(−iωt)+ exp(+iωt)( ) = 2cosωt = u(0,t)

Let’s add two waves in opposite directions

u(x,t) = u0 exp i(kx −ωt)( ) + u0 exp i(kx +ωt)( )

k = 2π
λ

= 2πn
2L

= πn
L

u(L,t) = u0 exp(ikx) exp(−ωt)+ exp(+ωt)( ) = 2exp(ikx)cosωt = u(0,t)

2. Transverse vibrations of a stretched string

Consider a string that is bent, such that a segment has angle θ with the normal at one end 

and θ + Δθ at the other. This will generate a difference in forces across the segment.

Suppose it is already under tension T. The forces in the x and y directions are going to be

 

Fx = T cos(θ + Δθ )−T cosθ = 2T sin(θ + Δθ / 2)sin(θ − Δθ / 2) ≈ Tθ 2  0
Fy = T sin(θ + Δθ )−T sinθ ≈ TΔθ

We need to link this to a mass x acceleration:

 TΔθ = (µΔx)y

where μ is mass per unit length
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We need to compute a value for Δθ. We use the relationship

 

Δθ = ∂θ
∂x

Δx

tanθ = ∂y
∂x

∂tanθ
∂x

= ∂tanθ
∂θ

∂θ
∂x

= sec2θ ∂θ
∂x

= ∂2 y
∂x2

sec2θ  1 ⇒ ∂θ
∂x

∂2 y
∂x2

⇒ Δθ = ∂2 y
∂x2

Δx

Hence we have

TΔθ = T ∂2 y
∂x2

Δx = (µΔx) ∂
2 y
∂t 2

⇒ ∂2 y
∂t 2

= T
µ
∂2 y
∂x2

This is a standard wave equation with the velocity of sound given as

c = T
µ

Now let’s think about where we have come from, and set this up with fixed ends, like a string 
on a musical instrument.

So let us assume a general solution of the form

y(x,t) = f (x)cosωt

Using the cosine rather than the sine so that we start with a displacement.

We then have

∂2 y
∂t 2

= −ω 2 f (x)cosωt

∂2 y
∂x2

= ∂2 f
∂x2

cosωt

∂2 y
∂t 2

= T
µ
∂2 f
∂x2

⇒−ω 2 f (x)cosωt = T
µ
∂2 f
∂x2

cosωt

∂2 f
∂x2

+ ω 2

c2
f = 0

This is familiar territory. Since we need f = 0 at x = 0, our solution is

f (x) = Asin ω x
c

⎛
⎝⎜

⎞
⎠⎟
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With a string fixed at both ends, we also need the condition that f = 0 at x = L. So we need to 
have

f (L) = Asin ωL
c

⎛
⎝⎜

⎞
⎠⎟ = 0

and hence

ωL
c

= nπ ⇒ νn =
ω n

2π
= nc
2L

= n
2L

T
µ

For example, the E string of a violin is set to be 640 Hz, when n = 1. The length of the string 
is 33 cm and its mass is 0.125 g. Hence we have

ωL
c

= nπ ⇒ νn =
ω n

2π
= nc

2L
= n

2L
T
µ

c = 2Lν1 = 2 × 0.33× 640 = 422.4 m/s
µ = 0.125 ×10−3 / 0.33= 3.8 ×10−4  kg/m
T = c2µ = 422.42 × 3.8 ×10−4 = 68 N

This is a pull of about 7 kg if converted to a mass. Note there are 4 strings.

Wave transmission and boundaries

Consider a string that has a discontinuous change in properties at some point, which we call  
x = 0.

To the left, we have mass per unit length of µ1 and velocity of wave c1, and to the right we 

have µ2 and c2.

We have an incident wave travelling from left to right. Part of this wave is transmitted, and 
part is reflected. The boundary condition is that the displacement of both parts at x = 0 is 
identical. You also need to have a continuous derivative or else you form a kink. Hence we 
have

y1(0) = y2 (0) ; ∂y1
∂x x=0

= ∂y2
∂x x=0

Define the three waves, noting the sign of k defines the direction of the wave

yi = Ai sin k1x −ω1t( )
yr = Ar sin −k1x −ω1t( )
yt = At sin k2x −ω1t( )

Note that the frequency of the transmitted wave stays the same, but the wavelength changes, 
because the junction needs to move by both waves at the same frequency.

We have boundary conditions:
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y1(0) = y2 (0) ⇒ Ai + Ar = At
∂y1
∂x x=0

= ∂y2
∂x x=0

⇒ − Aik1 + Ark1 = −Atk2

Too many unknowns as it stands, but we have the ratio of wave vectors from our given facts:

ω = ck ⇒ c1k1 = c2k2 ⇒ k1 / k2 = c2 / c1

Hence we have

Ai − Ar( )c2 = Atc1
We can combine these two equations:

Ai + Ar = At

Ai − Ar = At
c1
c2

2Ai = At 1+
c1
c2

⎛
⎝⎜

⎞
⎠⎟

⇒ At =
2c2
c1 + c2

Ai

c2
c1

Ai − Ar( ) = At
c2
c1

Ai − Ar( )− Ai + Ar( ) = 0

c2 Ai − Ar( ) = c1 Ai + Ar( ) ⇒ c1 + c2( )Ar = c2 − c1( )Ai ⇒ Ar =
c2 − c1
c1 + c2

Ai

Example of a fixed end, such that c2 = 0

At =
2c2
c1 + c2

Ai = 0

Ar =
c2 − c1
c1 + c2

Ai =
−c1
c1

Ai = −Ai

This means the reflected wave goes back with opposite displacement. A peak hits the wall 
and reflects as a trough. This is the standard reflection condition.

Now take the case that c1 = c2. It follows that 

At =
2c2
c1 + c2

Ai = Ai

Ar =
c2 − c1
c1 + c2

Ai = 0
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Air in a column

Very quickly to note, given that all this has links with musical instruments, that we can think 
quickly about air in a pipe. We could have open or closed ends.

At an open end, the pressure is zero, so any wave set up in the air will have a maximum at 
the open end.

At the closed end, nothing moves, so you will have a node.

Thus a pipe will support different harmonics depending on whether the ends are open or 
closed. Typically one end is open and one closed.

Musical instruments

Here the idea is to exploit forced oscillations, so that you can convert the energy of the 
primary oscillator (eg a string) into a sound wave that propagates through air. Typically the 
primary oscillator drives oscillations of another component, such as the body of a violin 
which in turn forces oscillations of the air to generate sound waves. We have the problem of 
resonant frequencies, but complex three-dimensional (or two-dimensional) objects will have 
many resonances, and we recall that resonances can be broad with some damping, so that 
the resonator will pick up a wide range of frequencies. But note that there will inevitably be 
an art in designing these resonators and a critical choice of materials.

Note also that musical notes will die away. Better instruments will have a reasonable degree 
of sustain, ie relative high Q factor. But you can add a light bit of friction, mechanically or by 
hand, to lower Q to have sharper cut-off of the note.

Summary

1. We have looked at the wave equations in continuous media

2. We have looked at the effect of a boundary in the media
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