
Topic 7: Many coupled oscillators

1. Model

Draw several balls and springs connected to fixed walls at each end.

Note that technically we are talking about motions in the direction of the spring, but the 
formalism will extend to transverse motions also – draw these – and the formalism is the 
same. 

We won’t worry about the differences just yet, but we will draw pictures of displacements in 
the vertical axis to make things more visual, but we will be considering longitudinal motions.

So we have N balls. How many normal modes will there be? N of course.

So let’s guess some solutions.

1. Lowest mode, a single sinusoidal displacement with wavelength equal to twice the 
distance between walls

2. Next mode, a single sinusoidal displacement with wavelength equal to the distance 
between walls, that is, twice the distance between walls divided by 2.

3. Third mode, the same with the wavelength equal to twice the 2/3 the distance between 
walls = twice the distance between walls divided by 3.

4. So now we might have a trend, in that the allowed oscillations look like standing waves 
with wavelength = twice the distance between walls divided by the order of the wave

5. So how far can we go? The N’th mode has to be a wavelength equal to twice the distance 
between walls divided by N. Note that the distance between atoms = the distance 
between walls divided by N + 1, so each ball moves sequentially up and down. 

6. If there were a next mode up, the wavelength would equal the distance between balls, so 
each ball would sit at a zero. All other motions will be linear combinations of these 
waves because shorter wavelengths look like longer wavelengths. We will prove this in 
the next lecture.

We consider the boundary conditions, namely that the end points, namely ball 0 and ball N 
+ 1, cannot move. Hence a general solution for the displacement of any ball j for any mode n 
at any random time is given as

uj ,n = An sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟

Note that we have not included any time dependence – this represents a static displacement 
of amplitude An.

What does this mean?

1. Case n = 1, for j between 0 and N + 1 the argument ranges between 0 and π, so there is a 
single maximum half way along the string.
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2. Case n = 2, the same argument ranges between 0 and 2π, so there is a zero value half 
way along the string

3. Case n = 3, the argument ranges between 0 and 3π, so we have two zeroes along the 
string as well as at the end.

4. Case n = N, the argument ranges between 0 and Nπ, with N – 1 zeroes along the string as 
well as at the end, or N + 1 zeroes including the end.. Recall comment about the next 
highest mode, which would give N zeroes, at the positions of the balls.

Equation of motion

Let us take one ball and its two neighbours. The energy for displacements can be written as

Ej =
1
2
k u j − uj−1( )2 + 12 k u j − uj+1( )2

So we can do what we always do and compute the force:

Fj = −
dEj

duj

= −k u j − uj−1( )− k u j − uj+1( ) = −k 2uj − uj−1 − uj+1( )

So how to proceed? We have already shown that modes that are purely harmonic do not 
interact, but instead are superimposed. So we can take one mode alone and solve the 
equation for that mode only. 

We take mode n and input the previous equation with now an explicit time dependence:

uj ,n = An sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ cos(ω nt)

This gives us

Fj = −k 2uj − uj−1 − uj+1( ) = −kAn 2sin jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ − sin

( j −1)nπ
N +1

⎛
⎝⎜

⎞
⎠⎟ − sin

( j +1)nπ
N +1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt)

Recall that we have the trigonometric identities

sin(a + b) = sinacosb + cosasinb
sin(a − b) = sinacosb − cosasinb
sin(a + b)+ sin(a − b) = 2sinacosb

Thus we have
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Fj = −kAn 2sin jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ − sin

( j −1)nπ
N +1

⎛
⎝⎜

⎞
⎠⎟ − sin

( j +1)nπ
N +1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt)

= −kAn 2sin jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ − 2sin

jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ cos

nπ
N +1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt)

= −kAn2sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ 1− cos nπ

N +1
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt)

= −kAn2sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ 2sin2 nπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt)

Now we consider the mass x acceleration term

 

uj ,n = An sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ cos(ω nt)

muj ,n = −mω n
2 sin jnπ

N +1
⎛
⎝⎜

⎞
⎠⎟ cos(ω nt)

So let us equate the two

Fj = −kAn2sin
jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ 2sin2 nπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
cos(ω nt) = −mω n

2 sin jnπ
N +1

⎛
⎝⎜

⎞
⎠⎟ cos(ω nt)

ω n
2 = 4k

m
sin2 nπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

ω n = 2
k
m
sin nπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

= 2ω 0 sin
nπ

2(N +1)
⎛
⎝⎜

⎞
⎠⎟

Example of N = 5. We have

ω1 = 2ω 0 sin
π
2 × 6

⎛
⎝⎜

⎞
⎠⎟ = 2ω 0 sin 15°( ) = 0.52ω 0

ω 2 = 2ω 0 sin
2π
2 × 6

⎛
⎝⎜

⎞
⎠⎟ = 2ω 0 sin 30°( ) =ω 0

ω 3 = 2ω 0 sin
3π
2 × 6

⎛
⎝⎜

⎞
⎠⎟ = 2ω 0 sin 45°( ) = 1.41ω 0

ω 4 = 2ω 0 sin
4π
2 × 6

⎛
⎝⎜

⎞
⎠⎟ = 2ω 0 sin 60°( ) = 1.73ω 0

ω 5 = 2ω 0 sin
5π
2 × 6

⎛
⎝⎜

⎞
⎠⎟ = 2ω 0 sin 75°( ) = 1.93ω 0

The ratios are not integers, which means that you won’t get simple repetition of states if you 
excite two normal modes.
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A string

So let’s generalise to the case where the balls are atoms and the total length is say 50 cm. 
How many atoms? Well, an atom separation is about 10–10 m, so we might have the 
equivalent of 5 x 109 atoms or balls. Note that this is for an infinitesimally thin string, but in 
reality a string is thick.

So when we have a guitar string, we expect the lowest order modes to have a linear 
relationship with frequency. This is achieved because the arguments on the sine are small 
and hence the sine is effectively linear.

Summary

1. We have explored the dynamics of a row of balls fixed at one end, and derived the 
normal modes and corresponding frequencies

2. This model works in the limit of extremely large number of balls, to the point whereby we 
can think of the model as representing atoms in a macroscopic string

3. We have been interested in the long wavelength waves; next time we will start to think 
about what happens when we don’t fixe the ends and the wavelength approaches the 
spacing between atoms.
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