
Topic 6: Coupled oscillators 2

1. Recap from last time

We moved on from looking at single oscillators to look at systems that support several 
oscillations that are coupled.

These systems have several dynamic variables. For 2 objects in one dimension, we have two 
variables = the displacements of each object.

We have an equation for each variable, but we noted in our examples that the fundamental 
pattern of motions was not a single variable. Instead for two objects we found two new 
variables, which for our examples were the amplitude of in-phase and out-of-phase motions.

We defined the concept of a normal mode:

1. Well-defined pattern of displacements

2. Single frequency

3. Different normal modes do not interact – sometimes called orthogonal, because the 
vector dot product of motions will be zero. As for the case of in-phase and out-of-phase 
motions; but beware because when we define different masses we meed to be careful

We recast our simple two coupled oscillators in terms of normal modes and found that the 
energy could be written in terms of variables that did not couple in the final energy, even 
though the individual displacement variables are coupled.

We developed a recipe that we will review later after completing the CO2 example.

2. CO2 vibrations

Complete example and review of recipe from the end of last topic.

3. Double pendulum

Draw a system of two balls on a single pendulum, both of equal mass and equal separation 
from the pivot

Define variables x1,y1 and x2,y2, with 1 being the top ball and 2 as the bottom ball

Energy of the top ball is as before

E1 = mgy1 =
mg
2L

x1
2

The second ball will have its energy affected by the displacement of the top ball, because it 
will have already been lifted by the first ball. We also need to be careful about our definition 
of x2. We can write

E2 = mgy2 =
mg
2L

x1
2 + mg
2L
(x2 − x1)

2
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So now we have the two forces

E = E1 + E2 =
mg
L
x1
2 + mg
2L
(x2 − x1)

2

F1 = − dE
dx1

= − 2mg
L

x1 +
mg
L
(x2 − x1) =

mg
L
(x2 − 3x1) = mx1

F2 = − dE
dx2

= − mg
L
(x2 − x1) = mx2

x1 +ω 0
2 (3x1 − x2 ) = 0

x2 +ω 0
2 (x2 − x1) = 0

Now we try general solutions as before

x1 = C1 cosωt
x2 = C2 cosωt

These lead to the equations

−C1ω
2 +ω 0

2 (3C1 −C2 ) = 0
−C2ω

2 +ω 0
2 (C2 −C1) = 0

We rewrite these in matrix form as

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

Recall that this is an eigenvalue problem. We solve the eigenvalue from the following:

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2
= 0

(3ω 0
2 −ω 2 )(ω 0

2 −ω 2 )− (ω 0
2 )2 = 0

= 3(ω 0
2 )2 − 4ω 0

2ω 2 + (ω 2 )2 − (ω 0
2 )2 = 0

= 2(ω 0
2 )2 − 4ω 0

2ω 2 + (ω 2 )2 = 0

ω 2 =
4ω 0

2 ± 16(ω 0
2 )2 − 8(ω 0

2 )2

2
= 2ω 0

2 ± 2ω 0
2 = 2 ± 2( )ω 0

2

Now we can solve also for the relative displacements by substituting in the two equations
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First solution

3ω 0
2 − 2 − 2( )ω 0

2 −ω 0
2

−ω 0
2 ω 0

2 − 2 − 2( )ω 0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

=
1+ 2( )ω 0

2 −ω 0
2

−ω 0
2 −1+ 2( )ω 0

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

1+ 2( )C1 = C2

C1 = −1+ 2( )C2

1+ 2( )C1 = 1+ 2( ) −1+ 2( )C2 = −1+ 2 − 2 + 2( )C2 = C2

C1
C2

= 1
1+ 2

This is the in-phase solution.

Second solution

3ω 0
2 − 2 + 2( )ω 0

2 −ω 0
2

−ω 0
2 ω 0

2 − 2 + 2( )ω 0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

=
1− 2( )ω 0

2 −ω 0
2

−ω 0
2 − 1+ 2( )ω 0

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

1− 2( )C1 = C2

C1 = − 1+ 2( )C2

1− 2( ) 1+ 2( )C1 = 1+ 2( )C2 = 1+ 2 − 2 − 2( )C1 = −C1
C1
C2

= − 1+ 2( )

And this is the out-of-phase solution.

4. Driven double pendulum

Redraw the double pendulum but now have added displacement of top ball

η =η0 cosωt

Note now that the angular frequency is now imposed and will determine the frequencies of 
the vibrations. It no longer is an unknown to be solved.

Given that we also know the amplitude of the imposed motion we should be able to solve 
exactly for our two unknowns, C1 and C2.
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Note that in what we do now we will forget about damping. To include damping will not add 
the new insights we are after, but will make the process much more complicated.

The sole change from before is that we now have an additional term for the equation for the 
top ball, namely we need to consider the rising of the first ball taking account of the position 
of the pivot of the pendulum.

E1 =
mg
2L

x1 −η( )2

E = E1 + E2 =
mg
2L

x1 −η( )2 + mg
2L

x1 −η( )2 + mg
2L

x2 − x1( )2

= mg
L

x1 −η( )2 + mg
2L

x2 − x1( )2

F1 = − dE
dx1

= − 2mg
L

x1 −η( )+ mg
L

x2 − x1( ) = mx1
x1 + 2ω 0

2 x1 −η( )−ω 0
2 x2 − x1( ) = 0

x1 + 3ω 0
2x1 −ω 0

2x2 = 2ω 0
2η0 cosωt

From before we also had

x2 +ω 0
2x2 −ω 0

2x1 = 0

Now we use the same solutions as before and obtain

−C1ω
2 +ω 0

2 (3C1 −C2 ) = 0
−C2ω

2 +ω 0
2 (C2 −C1) = 0

−C1ω
2 + 3ω 0

2C1 −ω 0
2C2 = 2ω 0

2η0
−C2ω

2 +ω 0
2C2 −ω 0

2C1 = 0

Put this in matrix form to obtain

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 2ω 0

2η0
0

⎛

⎝
⎜

⎞

⎠
⎟

Which we can tackle by inverting the matrix

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

× 2ω 0
2η0
0

⎛

⎝
⎜

⎞

⎠
⎟

Recall the inverse of a 2 x 2 matrix

A = a b
c d

⎛
⎝⎜

⎞
⎠⎟

A−1 = 1
A

d −b
−c a

⎛
⎝⎜

⎞
⎠⎟
= 1
ad − bc

d −b
−c a

⎛
⎝⎜

⎞
⎠⎟
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This gives us

3ω 0
2 −ω 2 −ω 0

2

−ω 0
2 ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

= 1
3ω 0

2 −ω 2( ) ω 0
2 −ω 2( )− ω 0

2( )2
ω 0

2 −ω 2 ω 0
2

ω 0
2 3ω 0

2 −ω 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3ω 0
2 −ω 2( ) ω 0

2 −ω 2( )− ω 0
2( )2 = 2 ω 0

2( )2 − 4ω 2ω 0
2 + ω 2( )2

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1
2 ω 0

2( )2 − 4ω 2ω 0
2 + ω 2( )2

ω 0
2 −ω 2( )2ω 0

2η0

2 ω 0
2( )2η0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Let’s look at the denominator

2 ω 0
2( )2 − 4ω 2ω 0

2 + ω 2( )2 = ω 2 −ω1
2( ) ω 2 −ω 2

2( )
ω1

2 +ω 2
2 = 4ω 0

2

ω1
2ω 2

2 = 2 ω 0
2( )2

ω1
2 = 2ω 0

2 −δ ; ω 2
2 = 2ω 0

2 +δ

ω1
2ω 2

2 = 4ω 0
2 −δ 2 ⇒ δ 2 = 2 ω 0

2( )2 ; δ = 2ω 0
2

ω1
2 = 2 − 2( )ω 0

2 ; ω 2
2 = 2 + 2( )ω 0

2

Note that these are the same as the two normal mode frequencies. No surprise but nice!

Thus we have

C1
C2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1

ω 2 −ω1
2( ) ω 2 −ω 2

2( )
ω 0

2 −ω 2( )2ω 0
2η0

2 ω 0
2( )2η0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

C1 =
ω 0

2 −ω 2( )2ω 0
2η0

ω 2 −ω1
2( ) ω 2 −ω 2

2( )

C2 =
2 ω 0

2( )2η0
ω 2 −ω1

2( ) ω 2 −ω 2
2( )

So draw the graph in stages …
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Note that the resonant frequencies are

ω1 = 2 − 2ω 0  0.77ω 0

ω 2 = 2 + 2ω 0  1.85ω 0

Draw axes and mark in the resonant frequencies. Note the following …

1. At near-zero applied frequency we expect both balls to move together with the imposed 
motion

C1 =
2ω 0

4η0
ω1

2ω 2
2 = 2ω 0

4η0
2ω 0

4 =η0 = C2

2. On increase applied frequency, denominator becomes smaller, and for C1 numerator also 
becomes smaller but not as fast. Draw the first part. Note that both C1 and C2 are the same 
sign, and the same sign as the applied displacement.

3. As the applied frequency tends towards the first resonant frequency, the denominator tends 
to zero so we have a divergence of both displacements (still in phase) 

4. At just above the first resonant frequency ω1, the denominator is now negative in both 
cases, but again coming down from minus infinity.
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5. When we hit ω0 the numerator for C1 goes to zero, and beyond that the numerator is 
negative so that C1 is positive. C2 always remains negative.

6. At this point where C1 = 0, for C2 we have

C2 =
2 ω 0

2( )2η0
ω 0

2 −ω1
2( ) ω 0

2 −ω 2
2( ) =

2 ω 0
2( )2η0

ω 0
2( )2 1− 2 + 2( ) 1− 2 − 2( ) =

2η0
− 2 −1( ) 1+ 2( ) = −2η0

Draw this mode. Some degree of incredulity. But note that we do have to have a cross-over 
from in-phase to out-of-phase motion, and this is the point where this happens.

7. So as we moved towards the second resonance, C1 heads to +infinity and C2 heads to 
minus infinity. As we head towards this second resonance, we have the out-of-phase 
motions.

8. On increasing the frequency beyond the first resonance, the denominators become larger 
and larger with positive value. But note that the numerator for C1 is negative and the 
numerator for C2 is always positive, so now we get a full switch coming away from the 
resonance, and on increasing applied frequency the two amplitudes head towards zero.

5. Summary

The results for this case are quite general

1. For any system we will have resonant frequencies for all the normal modes

2. If the applied force can move things in some way in relationship to the normal mode, you 
will get resonant behaviour

3. In the case of CO2, you will get absorption of electromagnetic radiation for the mode in 
which the C and O move in opposite direction, but not for the symmetric stretch. In more 
complex cases you might hit a number of resonances, but it does depend on the 
symmetry of the vibration. In terms of absorption of electromagnetic radiation – usually 
infrared – the normal mode needs to involve a change in dipole moment

4. For other systems, you can get a range of normal modes excited. For example, the earth 
will vibrate at a wide range of frequencies when there is an earthquake
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