
Topic 5: Coupled oscillators

1. Physical example

Show example of two pendulums on a string. Move both and note chaotic. Move one and 
watch it slow down and the other start up.

Post question: Can we unravel this?

2. Worked example

Two pendulums with spring connection

Draw two types of motion, in phase and exactly out of phase.

Note that we are not going to consider damping at all – will make things more complicated 
and mask the things we want to learn.

In phase motion will not stretch the spring, and is therefore easily predicted from previous 
theory of the pendulum

Recall that we have

 

E = mg
2L

x2

F = − dE
dx

= − mg
L
x = mx

mx + mg
L
x = 0

x = Acosωt

ω = g
L

This will be the frequency for this mode.

ω1 =
g
L

Second mode stretches the spring, so will have a higher frequency. Now write the energy as
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E = mg
2L

xa
2 + mg
2L

xb
2 + 1
2
k xa − xb( )2

Fa = − dE
dxa

= − mg
L
xa − k xa − xb( ) = mxa

xa = −xb

mxa +
mg
L
xa + 2kxa = 0

x + g
L
+ 2ω S

2⎛
⎝⎜

⎞
⎠⎟ x = 0

x = Acosωt

ω = g
L
+ 2ω S

2

Question, what happens if I move the spring up? Take the limit that it moves to the top, 
where you end up with a single pendulum. Hence moving the spring up will reduce the 
frequency.

3. Normal modes

These two vibrations can be called “normal modes”. Features of normal modes are

1. All objects move with a single frequency

2. All objects move with a definite phase relation, in phase or out of phase

3. Normal modes do not interact, but we aren’t there yet

So let’s define two normal mode coordinates, and rewrite the energy

Q1 =
1
2
xa + xb( )

Q2 =
1
2
xa − xb( )

1
2
Q1 +Q2( ) = xa

1
2
Q1 −Q2( ) = xb

E = mg
2L

xa
2 + mg
2L

xb
2 + 1
2
k xa − xb( )2

= mg
4L

Q1 +Q2( )2 + mg
4L

Q1 −Q2( )2 + kQ2
2

= mg
4L

Q1
2 + 2Q1Q2 +Q2

2( ) + Q1
2 − 2Q1Q2 +Q2

2( ) + kQ2
2

= mg
2L

Q1
2 +Q2

2( ) + 12 kQ2
2
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So we see that there is no term in the energy that involves both normal mode coordinates. 
Good!

Note that we have two normal modes because we have two degrees of freedom. This result 
can be generalised.

4. Understanding effects of initial conditions

I need to decide how I am going to set this up, that is what are my initial conditions. Let me 
move one of these and start both with zero velocity. Thus I might write

 

xa = C1a cosω1t +C2a cosω 2t
xb = C1b cosω1t +C2b cosω 2t
xa = −ω1C1a sinω1t −ω 2C2a sinω 2t
xb = −ω1C1b sinω1t −ω 2C2b sinω 2t
@t = 0
xa = C1a +C2a

xb = 0 = C1b +C2b ⇒C1b = −C2b

xa = 0
xb = 0

Note that this confirms we need not add phases to the cosines. We know from before that for 
one mode the C values are the same, and for the other they are opposite. So we can write

xa = C cosω1t +C cosω 2t
xb = C cosω1t −C cosω 2t

cosA + cosB = 2cos A + B
2

⎛
⎝⎜

⎞
⎠⎟ cos

A − B
2

⎛
⎝⎜

⎞
⎠⎟

cosA − cosB = 2sin A + B
2

⎛
⎝⎜

⎞
⎠⎟ sin

A − B
2

⎛
⎝⎜

⎞
⎠⎟

xa = 2C cos
ω1 +ω 2

2
t⎛

⎝⎜
⎞
⎠⎟ cos

ω1 −ω 2

2
t⎛

⎝⎜
⎞
⎠⎟

xb = 2C sin
ω1 +ω 2

2
t⎛

⎝⎜
⎞
⎠⎟ sin

ω1 −ω 2

2
t⎛

⎝⎜
⎞
⎠⎟

Note we get beating, with and slow parts. At time = 0 only xa has amplitude. At some point 
the cosine goes to zero and the sine is a maximum, which means that as the first component 
stops the second one starts.

So now we understand this complex motion!
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5. Doing this formally

 

E = mg
2L

xa
2 + mg
2L

xb
2 + 1
2
k xa − xb( )2

Fa = − dE
dxa

= − mg
L
xa − k xa − xb( ) = mxa

Fb = − dE
dxb

= − mg
L
xb + k xa − xb( ) = mxb

xa +ω 0
2xa +ω S

2 xa − xb( ) = 0
xb +ω 0

2xb −ω S
2 xa − xb( ) = 0

Try a general solution:

xa = Ca cosωt
xa = Cb cosωt

So we put these into our equation, noting we can drop the cosine term because it appears 
everywhere

−ω 2Ca +ω 0
2Ca +ω S

2 Ca −Cb( ) = −ω 2Ca + ω 0
2 +ω S

2( )Ca −ω S
2Cb = 0

−ω 2Cab +ω 0
2Cb −ω S

2 Ca −Cb( ) = −ω 2Cb + ω 0
2 +ω S

2( )Cb −ω S
2Ca = 0

So where do we go with this? We have two equations but three unknowns. Not good.

But note that we can scale all the C’s with a common factor so maybe we should only worry 
about relative sizes.

Move everything to one side

 

−ω 2 +ω 0
2 +ω S

2( )Ca =ω S
2Cb

−ω 2 +ω 0
2 +ω S

2( )Cb =ω S
2Ca

Ca

Cb

= ω S
2

−ω 2 +ω 0
2 +ω S

2 =
−ω 2 +ω 0

2 +ω S
2

ω S
2

ω S
2( )2 = −ω 2 +ω 0

2 +ω S
2( )2

±ω S
2 = −ω 2 +ω 0

2 +ω S
2

ω 2 =ω 0
2 +ω S

2 ω S
2

ω1
2 =ω 0

2

ω 2
2 =ω 0

2 + 2ω S
2

Exactly as before. No surprises, but nice.

For the two solutions
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C1a
C1b

= −ω 0
2 +ω 0

2 +ω S
2

ω S
2 = ω S

2

ω S
2 = +1

C2a

C2b

=
− ω 0

2 + 2ω S
2( ) +ω 0

2 +ω S
2

ω S
2 = −ω S

2

ω S
2 = −1

Which is what we were expecting.

But we could have done this a slightly different way, which is going to be more useful going 
forward.

−ω 2Ca + ω 0
2 +ω S

2( )Ca −ω S
2Cb = 0

−ω 2Cb + ω 0
2 +ω S

2( )Cb −ω S
2Ca = 0

ω 0
2 +ω S

2( )−ω 2 −ω S
2

−ω S
2 ω 0

2 +ω S
2( )−ω 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
×

Ca

Cb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0

This is an eigenvalue/eigenvector problem. The solution exists for

ω 0
2 +ω S

2( )−ω 2 −ω S
2

−ω S
2 ω 0

2 +ω S
2( )−ω 2

= 0

ω 0
2 +ω S

2( )−ω 2( )2 = ω S
2( )2

Exactly as before!

But now we can work out the eigenvectors.

ω 0
2 +ω S

2( )−ω 0
2 −ω S

2

−ω S
2 ω 0

2 +ω S
2( )−ω 0

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
×

Ca

Cb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

ω S
2 −ω S

2

−ω S
2 ω S

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×

Ca

Cb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0⇒C1a = C1b

ω 0
2 +ω S

2( )− ω 0
2 + 2ω S

2( ) −ω S
2

−ω S
2 ω 0

2 +ω S
2( )− ω 0

2 + 2ω S
2( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
×

Ca

Cb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

−ω S
2 −ω S

2

−ω S
2 −ω S

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×

Ca

Cb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0⇒C1a = −C1b

This is the approach I recommend

6. Example of CO2 molecule

Now we have three atoms, which can move along the axis (ignore transverse motions for 
now. Energy is given as
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E = 1
2
k xO1 − xC( )2 + 1

2
k xO2 − xC( )2

FO1 = − dE
dxO1

= −k xO1 − xC( ) = mOxO1

FO2 = − dE
dxO2

= −k xO2 − xC( ) = mOxO2

FC = − dE
dxC

= −k 2xC − xO1 − xO2( ) = mCxC

Let’s write some general solutions

xO1 = CO1 cosωt
xO2 = CO2 cosωt
xC = CC cosωt

So we substitute into the force equations, noting that we can drop the cosine terms again

−mOCO1ω
2 + k CO1 −CC( ) = 0

−mOCO2ω
2 + k CO2 −CC( ) = 0

−mCCCω
2 + k 2CC −CO1 −CO2( ) = 0

k /mO −ω
2 0 −k /mO

0 k /mO −ω
2 −k /mO

−k /mC −k /mC 2k /mC −ω
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

×
CO1
CO2
CC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

Solutions are obtained from

k /mO −ω
2 0 −k /mO

0 k /mO −ω
2 −k /mO

−k /mC −k /mC 2k /mC −ω
2

= 0

From which we obtain

k /mO −ω
2 0 −k /mO

0 k /mO −ω
2 −k /mO

−k /mC −k /mC 2k /mC −ω
2

= 0

⇒ k /mO −ω
2( )2 2k /mC −ω

2( )− 2 k /mO −ω
2( )k2 /mOmC = 0

One solution is

k /mO −ω
2 = 0

ω 2 = k /mO

6/8



We can divide out this solution to yield

k /mO −ω
2( ) 2k /mC −ω

2( )− 2k2 /mOmC = 0

ω 4 − k 1/mO + 2 /mC( )ω 2 + 2k2 /mOmC − 2k
2 /mOmC = 0

ω 4 − k 1/mO + 2 /mC( )ω 2 = 0

ω 2 = 0
ω 2 = k 1/mO + 2 /mC( )

What about eigenvectors. Take the zero solution

k /mO 0 −k /mO

0 k /mO
2 −k /mO

−k /mC −k /mC 2k /mC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

CO1
CO2
CC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

k /mO × CO1 −CC( ) = 0
k /mO × CO2 −CC( ) = 0
−k /mC × CO1 +CO2( ) + 2k /mC ×CC
CC = CO1 = CO2

This is the uniform translation of the molecule

Take the first solution we found

k /mO − k /mO 0 −k /mO

0 k /mO − k /mO −k /mO

−k /mC −k /mC 2k /mC − k /mO

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

CO1
CO2
CC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

−k /mO ×CC = 0⇒CC = 0
−k /mC × CO1 +CO2( ) = 0⇒CO1 = −CO2

This is the symmetric stretch – draw picture

The other solution is more complicated

−2k /mC 0 −k /mO

0 −2k /mC −k /mO

−k /mC −k /mC −k /mO

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

CO1
CO2
CC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0

2CO1 /mC = −CC /mO

2CO2 /mC = −CC /mO

⇒CO1 = CO2

For this mode, the oxygen atoms move one way and the carbon atom moves the other way, 
preserving the centre of mass – draw picture
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Note that we haven’t included the transverse motions, which would lead to two additional 
centre of mass motions and 2 rotations, and 2 more distortions (orthogonal), making a total of 
9 modes.

7. Summary of general recipe

1. Write down the energy equation, and differentiate to get forces on all particles. This works 
better for me that trying to write down forces immediately.

2. Make sure you get the signs right or else it will go horribly wrong!

3. Equate the force to a mass times acceleration

4. Assume for one mode a general solution with a single frequency but a different phase for 
each particle – the sign of the phase will come in the sign of the relative amplitude

5. Write the equation as a matrix equation, and the set of frequencies are found as the 
eigenvalues

6. You then obtain the relative motions as the eigenvectors – note that it is relative motion 
you get; the absolute might be set by the starting conditions

7. For more complex systems, you need to solve the equations on a computer!
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