
Topic 1: Simple harmonic motion

Introduction

Why do we need to know about waves

1. Ubiquitous in science – nature likes wave solutions to equations

2. They are an exemplar for some essential Physics skills: differential equations, solutions of 
eigenvector equations

Show a number of visual examples

1. Quartz clock

2. Cuckoo clock

3. Walking

4. Atoms vibrating in a crystal

5. Light

6. Neutron and electron scattering – wave/particle duality

7. Sound = music

8. Oscillating astronomical objects, http://www.aavso.org/lcotw/ae-ursae-majoris

9. Vibrating Earth, http://icb.u-bourgogne.fr/nano/MANAPI/saviot/terre/index.en.html

10.Water waves, http://vimeo.com/channels/63693/5301095

Where are we heading in this course

1. Simple harmonic motion

2. Damped harmonic motion

3. Forced harmonic motion

4. Coupled oscillators

5. Travelling waves

Books

Vibrations and Waves, GC King (Manchester, Wiley) and AP French (MIT, CBS). I will mostly 
follow King, but French is the more traditional book.

Loads of stuff on the web! Including MIT courseware videos.
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Most simple oscillator

Simple model

Start with mass and spring, assuming the spring has no mass.

Draw pictures showing the situation of rest, pull and compress.

Question: how do we define the energy?

We can write the energy as a Taylor series. In practice systems are designed to ensure that the 
first term is dominant. This works well with a spring because although it expands quite a bit, 
the motion on a single turn is very small.

Equations of motion

From harmonic energy calculate the spring force as minus the derivative. Show that you get 
exactly what you want.

E = 1
2
kx2

F = − dE
dx

= −kx

d2E
dx2

= k
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We use force = mass × acceleration. Write master equation:

 

F = −kx = ma = m d
2x
dt 2

= mx2

−kx = mx2

mx2 + kx = 0

Key thing here – the second differential is within a scale factor of the original function. Ask 
the audience if they know of any functions where this works.

First try the cosine or sine functions

 

x = Acosωt
x = −Aω sinωt
x = −Aω 2 cosωt

mx + kx = −Amω 2 cosωt + kAcosωt

= −mω 2 + k( )Acosωt = 0
ω 2 = k /m

Note that this also works if we use sine instead of cosine. 

Note dimension of units. k has units of energy/distance2 = mass/time2. Thus ω has units of 1/
time, which is like a frequency. But it isn’t a frequency alone, because the cosine repeats in 
units of 2π. So we have

ω = 2π f = 2π /τ

Frequency has units of Hz = 1/second. Angular frequency has units of radians per second.

Sketch figure of cosine, highlighting the period.

Highlight definition of angular frequency.

Note also that ω depends on k and m, but not at all on A. That means it is completely 
independent of the starting point, and hence of the energy within the vibration.

The other possible solution is exponential:
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x = Aexpαt
x = Aα expαt
x = Aα 2 expαt

mx + kx = Amα 2 expαt + kAexpαt

= mα 2 + k( )Aexpαt = 0
α 2 = −k /m

α = i k /m = iω
x = Aexp iωt = A cosωt + isinωt( )
x = iωAexp iωt
x = −ω 2Aexp iωt = −ω 2x

mx + kx = −mω 2x + kx = 0

Display on Argand diagram. Note that we have a vector of fixed length rotating in the 
complex plane.

So can we use a combination of functions, such as

x = Acosωt + Bsinωt
= A0 acosωt + bsinωt( ) ; a2 + b2 = 1
= A0 cosδ cosωt + sinδ sinωt( )
= A0 cos(ωt −δ )

So we see that these sorts of combinations act as a phase shift. 
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The value of δ comes down to our definition of time, and particularly what we call the origin 
of time. However, when we release a ball on a spring, the sensible definition would have δ = 
0, which defines what we call our boundary condition. In the case of releasing the ball from 
a standing start, we define both the phase shift (zero) and the amplitude (how far we 
extended the string).

Energy of the oscillator

 

E = 1
2
mx2 + 1

2
kx2

= 1
2
m ωAsinωt( )2 + 1

2
k Acosωt( )2

= 1
2
A2 mω 2 sin2ωt + k cos2ωt( )

= 1
2
A2 k sin2ωt + k cos2ωt( )

= 1
2
A2k

Note that there is no dependence on time, so we have shown that energy is conserved.

Now let’s look at the average components

 

KE = 1
2
m x2 = 1

2
mA2ω 2 sin2ωt = 1

4
mA2ω 2 = 1

4
kA2

PE = 1
2
k x2 = 1

2
kA2 cos2ωt = 1

4
kA2

E = KE + PE = 1
2
kA2

It is a standard result for the harmonic oscillator that the average kinetic and potential 
energies are the same. There is no surprise here when you consider that both are sinusoidal-
squared functions, and that in the harmonic oscillator there is complete conversion between 
kinetic and potential energy. 

Draw diagram showing where KE and PE have maxima and minima
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Effect of gravity

Note that we are assuming that the displacements are small enough that the gravitational 
force is the same for all x. However, we have stretched the string a bit at the start by the 
balance of forces

King page 5 shows that this cancels out. The key thing is that the harmonic equation is linear 
in x, so that wherever you start from makes no difference.

Effect of the mass of the spring

If we also take account of the mass of the spring, the model is changed. Done for us in King 
as problem 1.12 (answers provided) and French pp 60ff.

If the mass of the object is M, and the mass of the spring is m, the angular frequency changes 
to

ω 2 = k
M +m / 3

The factor of 3 comes from integrating the kinetic energy of the whole spring, where the 
velocity of the spring depends on the square of the distance.

Vibrations of simple molecules

Case of two identical atoms in a molecule, eg H2, N2, O2, F2 etc
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Picture of molecule showing the vibration

Energy

E = 1
2
k u1 − u2( )2

Let’s look at each atom 

 

f1 = − ∂E
∂u1

= −k u1 − u2( ) = mu1

f2 = − ∂E
∂u2

= +k u1 − u2( ) = mu2

But we know the solutions. One is atoms move together, and one is they move exactly in 
opposite directions. The first doesn’t involve 

 

f1 = − ∂E
∂u1

= −k u1 − u2( ) = mu1

f2 = − ∂E
∂u2

= +k u1 − u2( ) = mu2
u1 = acosωt
u2 = −acosωt

mω 2acosωt = k2acosωt
ω 2 = 2k /m

Note that the mass appears to be reduced by a factor of 2. This is the reduced mass, namely

1
mr

= 1
m1

+ 1
m2

= 2
m

Some values for molecules

Molecule Mass (g/mol) Frequency (THz) Force constant (J/m2)

H2 1 132 571

D2 2 93.5 573
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Molecule Mass (g/mol) Frequency (THz) Force constant (J/m2)

N2 14 71 2313

O2 16 47 1158

F2 19 27 454

Cl2 35.5 17 336

Br2 79.9 9.5 236

I2 126.9 6.2 160

Warning, units of frequency in literature can vary:

kHz = 103 Hz

MHz = 106 Hz

GHz = 109 Hz

THz = 1012 Hz

cm–1 from light spectroscopy, 100 cm–1 = 3 THz

eV often used in neutron spectroscopy, 1 eV = 0.242 GHz

meV, 1meV = 10–3 eV = 0.242 THz

Take the case of O2:

k = (2π f )2 ×m / 2 = 2π × 47 ×1012( )2
× 16 ×10−3 / 6.022 ×1023( ) / 2 = 1158 J/m2

Note that frequencies go down with mass, expecting a root(mass) dependence. It is actually 
faster than this. For example, compare iodine with bromine. Square root of ratios of mass is

mI2
/mBr2

= 126.9 / 79.9 = 1.26

fI2 / fBr2 = 9.5 / 6.2 = 1.53

Ask class to now check that the results for H2 and D2 give the same force constant, should be 
about half of that for O2

Model interatomic potential energy

Let’s interpret this with a model interatomic potential:
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Last year you looked at the Lennard-Jones potential:

E(r) = −4ε σ
r

⎛
⎝⎜

⎞
⎠⎟
6

− σ
r

⎛
⎝⎜

⎞
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12⎛

⎝⎜
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⎠⎟

dE
dr
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d2E
dr2

= − 4ε
σ 2 42 σ

r
⎛
⎝⎜

⎞
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8

−156 σ
r

⎛
⎝⎜

⎞
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⎞

⎠⎟
= − 4ε

σ 2
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2 × 21/3
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4 × 21/3

⎛
⎝⎜

⎞
⎠⎟ =

72ε
21/3σ 2

So here you have two variables and three quantities, namely bond length, bond or 
dissociation energy, and the vibrational frequency. Does this work? You will see in exercise 
class.

Often for covalent bonds we use the Morse potential:

E(r) = E0 exp2α (r0 − r)− 2expα (r0 − r)[ ]
dE
dr

= E0 −2α exp2α (r0 − r)+ 2α expα (r0 − r)[ ]
= 0 when r = r0

E(r0 ) = −E0

d2E
dr2 = E0 4α 2 exp2α (r0 − r)− 2α 2 expα (r0 − r)⎡⎣ ⎤⎦

= 2α 2E0 = k

So if we know the bond length and the molecular dissociation energy, we could evaluate the 
coefficient α from the known molecular vibrational frequencies. I will get you to look at these 
in next week’s exercise class.

Floating object

Picture
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Need to have uniform cross section area A, water density ρ, displacement y. Object has mass 
m. The mass of the water displaced by the motion is ρAy. For movement down, force is 
upwards due to displaced mass. So we have

m d
2y
dt 2

= −gρAy

y = y0 cosωt
ω 2 = gρA /m

 

Lets take some numbers. Suppose we have a light object of 0.1 kg, object of 1 cm radius, 
noting density of water is 1 g/cc, we have, with correct units

f = 1
2π

9.8 ×103 ×π ×10−4 / 0.1 = 0.88 Hz

Simple Pendulum

Show diagram

Horizontal displacement causes vertical rise which creates an additional force
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E = mgy

L − y = L cosθ  L 1− θ
2

2
⎛
⎝⎜

⎞
⎠⎟

y = 1
2
Lθ 2

x = L sinθ  Lθ

y = 1
2L

x2

E = mg
2L

x2

F = − dE
dx

= − mg
L
x = mx

mx + mg
L
x = 0

x = Acosωt

−mω 2Acosωt + mg
L
Acosωt = 0

−ω 2 + g
L
= 0

ω = g
L

Note that the frequency does not depend on mass. Nor on the initial conditions.

Comment on accuracy

1. We made small angle approximation, which is a standard trick in physics. It works when 
amplitudes are small, which is a common case.

2. In the case of the pendulum, the energy will increase at a slower rate that as the squared 
power for larger amplitude. Task to think why.

Rework in terms of angular coordinates, picture
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Here we work in angular variables rather than the Cartesian coordinates from before. From 
the mechanics of rotations, where we define torque and moment of inertia, we have

I = mL2

I d
2θ
dt 2

= −mgsinθL ≈ −mgθL

L d
2θ
dt 2

+ gθ = 0

θ = θ0 cos(ωt +δ )
−Lω 2 + g = 0

ω = g / L

which is exactly the same as before

Physical pendulum

Need to account for the mass distribution, so we work not in terms of the cartesian 
coordinates of the point mass, but in terms of the moment of inertia, angle of swing, and the 
torque.
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As for the simple pendulum, we define a torque, which we call τ. 

τ = −mgd sinθ ≈ mgdθ = I d
2θ
dt 2

d2θ
dt 2

+ mgd
I

θ = 0

ω 2 = mgd
I

This analysis is similar to what we saw for a simple pendulum, but now we have to take 
account of the various quantities. Note that if we put in the moment of inertia for the simple 
pendulum, things cancel and we get the same result as before.

Suppose we have a rod pivoting from one end, then we have

I = 1
3
mL2

d = L / 2

ω 2 = mgd
I

= mgL / 2
mL2 / 3

= 3g
2L

T = 2π 2L / 3g

Swinging of leg and walking

Work in pairs here.

1. Swing a leg naturally and work out period

2. Estimate the length of your leg, called this L

3. Now treat the leg as a rigid rod, so that it’s centre of mass is half way down, ie L/2, and its 
moment of inertia is that of a rigid rod = (1/3)mL2. Compute the natural frequency in Hz, 
not radians per second, and hence the period.

So take someone whose leg is 0.8 m long. We have
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f = 1
2π

3g
2L

= 1
2π

3× 9.8
2 × 0.8

= 0.68 Hz

T = 1/ f = 1/ 0.68 ≈1.5 s

Is this what you got?

If we have time, do an experiment

If you walk at 1 m/s, and if your stride is about 0.8 m, a stride will take 0.8 s. There are two 
strides in a period, so the period comes out as 1.6 s. Not bad eh! And note that it is 
independent of the mass of the person.

LC circuit

The idea is to charge the capacitor, then close the switch so that the capacitor can discharge 
through the indictor.

We use Kirchhoff’s voltage law, which states that the sum of the voltages around the circuit is 
zero.

VC =Q /C

VL = L
dI
dt

= L d
2Q
dt 2

VC +VL = 0

Q /C + L d
2Q
dt 2

= 0

d2Q
dt 2

+ 1
LC

Q = 0

Q(t) =Q0 cos(ωt +δ )

ω 2 = 1
LC

Note that some sources will write these equations in terms of current.

Summary

1. Identified the differential equation that gives simple harmonic motion
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2. For a number of physical systems, we have identified how the frequencies depend on the 
physical parameters. The results are not always intuitive

3. We have shown that the energy of a mechanical harmonic oscillator alternates between 
kinetic and potential. In the case of an LC circuit, the energy alternates between the 
energy in the capacitor and the energy in the inductor.
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