
Vibrations and waves: exercise sheet 7

Long chain with two atoms in the unit cell

Picture a long one-dimensional crystal with two atoms in the unit cell, A and B, of masses mA 
and mB. Call the repeat distance a. Imagine there is a spring force labelled J between both 
atoms and in both directions.

Write the equation for the energy of both atoms in unit cell labelled j, in terms of 

displacements uj
A  and uj

B .
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Using standard methods, convert the energy to forces.
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Assume solutions of the form

uj
A = Aexp i(kx −ωt)( )
uj
B = Bexp i(kx −ωt)( )

And write the relevant equations of motion. Note that x for unit cell j can be written as j 
times the repeat distance a, and recall that the idea is to compute the force via the negative 
derivative of the potential energy, and then equate to acceleration. Divide through by mass. 
Substitute in the solution and divide through by common factors. 
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You should end up with a matrix equation that looks something like:
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First take the case k = 0. Show that the two solutions are
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Show that for the first of these, A = B, and for the second, show that AmA = –BmB.
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Now try the case k = π / a , namely the wave length of the wave is twice the unit cell length. 

Show that the solutions are
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The result follows automatically.

Sketch the full graph. Identify what we called the acoustic and optic modes in the lecture.
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192 Lattice dynamics

8.5.3 General result
The general solution for all wave vectors can be obtained with a little more
algebra. Using eqns 8.37–8.41, we have

−Mω2Ũ = −J {2Ũ − ũ[1 + exp(ika)]}
−mω2ũ = −J {2ũ − Ũ [1 + exp(−ika)]}

(8.47)

These equations can be rewritten in matrix form:
(

Mω2 − 2J J [1 + exp(ika)]
J [1 + exp(−ika)] mω2 − 2J

)(
Ũ

ũ

)
= 0 (8.48)

This solution of this matrix equation is that for which the determinant of the
matrix is zero. This gives

[Mω2 − 2J ][mω2 − 2J ] = J 2[1 + exp(ika)][1 + exp(−ika)]
⇒ Mmω4 − 2J (M + m)ω2 + 4J 2 sin2(ka/2) = 0

⇒ ω2 = J
M + m

Mm
± J

Mn

√
(M + m)2 − 4Mm sin2(ka/2) (8.49)

This general result is shown for one set of masses in Fig. 8.14, which shows
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Fig. 8.14 Dispersion curves for the one-
dimensional diatomic chain obtained from
eqn 8.49.

both the acoustic and optic mode frequencies as functions of the wave vector.
It can readily be shown (Problem 8.10) that the results given earlier for k → 0
(eqns 8.42 and 8.46) are obtained from this general result. The general result
also allows us to solve for the atomic motions. For the two solutions for k → 0
it is straightforward to show that the acoustic mode solution for the frequency
gives Ũ = ũ, and that the optic model solution gives MŨ = −mũ.

It is interesting to consider the behaviour at the Brillouin zone boundary,
k = π/a. In this case the two frequencies can be shown to be (Problem 8.10)

ω2 = 2J

M
ω2 = 2J

m
(8.50)

The matrix equation (eqn 8.48) then simplifies to
(

Mω2 − 2J 0
0 mω2 − 2J

)(
Ũ

ũ

)
= 0 (8.51)

For the first solution, ω2 = 2J/M , ũ = 0 and the value of Ũ is undetermined.
For the second solution, ω2 = 2J/m, we now have Ũ = 0 and the value of ũ is
undetermined. So for both modes, one atom moves while the other stands still.

The value of the amplitude of the atom that moves cannot be determined
by the dynamic equations developed so far. It will depend on temperature, as
will be shown in the next chapter. The fact that in both modes only one atom
moves suggests that at the Brillouin zone boundary we have lost the distinction
between acoustic and optic modes. This is not always the case (for example,
a similar model with two equal masses but two different force constants will
retain the difference between acoustic and optic modes in the displacements for
all wave vectors, Problem 8.11), but in many crystals the distinction between
acoustic and optic modes is only properly maintained in the limit k → 0. This
point is not always appreciated!


