ELECTRIC AND MAGNETIC FIELDS
 ANSWERS TO WEEK 2 ASSIGNMENT

20 Q1
(a) Coulomb's Law gives the magnitude of the field due to a point charge. The direction of the field is radially outwards $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
from the nucleus or proton.

(b) The magnitude of the force required to make a particle of mass m move in a circle of radius r with speed v is $F=\frac{m^{2}}{r} \quad 6$ for using this

This force is provided by the electrostatic attraction exerted by the proton on the electron.
Therefore, letting m_{e} be the mass of the electron, we have

$$
\begin{gathered}
\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}=\frac{\mathrm{m}_{\mathrm{e}} \mathrm{v}^{2}}{\mathrm{r}} \Rightarrow \quad \mathrm{v}=\frac{\mathrm{e}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{~m}_{\mathrm{e}} \mathrm{r}}\left[\begin{array}{c}
\text { 6 for working } \\
\text { out } \mathrm{v} \text { correctly }
\end{array}\right.} \\
\mathrm{e}=1.60 \times 10^{-19} \mathrm{C} \quad \begin{array}{l}
\mathrm{r}=5.29 \times 10^{-11} \mathrm{~m} \\
\left.\varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \quad \mathrm{~m}_{\mathrm{e}} \quad=9.109 \times 10^{-31} \quad\right]_{\mathrm{kg}}^{\Rightarrow \mathrm{v}}=2.19 \times 10^{6} \mathrm{~m} \mathrm{~s}^{1}
\end{array}
\end{gathered}
$$

25 Q2 (a) The person must have a negative charge to generate an upward electric force opposing gravity. Let m be the mass of the person and -Q be the charge.

10
3 for sign
7 for magnitude
(at least 4 for
using QE $=\mathrm{mg}$)

$$
\mathrm{E}=160 \mathrm{~N} \mathrm{C}^{-1} \quad \mathrm{~m}=150 \mathrm{~kg} \quad \mathrm{~g}=9.81 \mathrm{~m} \mathrm{~s}^{-2} \Rightarrow \quad \mathrm{Q}=-9.20 \text { Coulombs }
$$

(b) For two 150 kg people, 500 m apart, with charges of -9.20 C , the repulsive force is

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{\mathrm{o}} \mathrm{r}^{2}}=\frac{3.27^{2}}{4 \pi \varepsilon_{0}(500)^{2}}=\mathbf{3 . 0 4 \times 1 0 ^ { 6 } \mathbf { N }} \\
& \text { Acceleration: } \quad a=\frac{F}{m}=\frac{3.04 \times 10^{6}}{150}=20295 \mathbf{~ m ~ s}^{2} \\
& \text { Acceleration due to gravity } \mathrm{g}=9.81 \mathrm{~m} \mathrm{~s}^{2}, \text { so } \quad \mathbf{a}=\mathbf{2 0 6 8} \mathbf{g}
\end{aligned}
$$

(c) The charge required to oppose gravity is so large that enormous electrostatic repulsive forces would be generated. For instance, in the case above, the two people would be able to float, but their horizontal acceleration would be 2000 g - far higher than the maximum survivable of about 50 g .

25 Q3 Diagram showing the charges and the forces on the 1 C charge:

The resultant force is therefore $\overline{\mathrm{F}}_{1}+\overline{\mathrm{F}}_{2}=\frac{3}{20 \pi \varepsilon_{0}}\left[\frac{3}{\sqrt{5}} \hat{\mathrm{i}}-\frac{1}{\sqrt{5}} \hat{\mathrm{j}}\right]$

6 for the correct final answer

25 Q4 (a) To apply the Principle of Superposition to this problem:

1. We divide up the rod into many very short elements, dx.
2. We regard an element $d x$ as a point charge, and use Coulombs Law to find its contribution to $\overline{\mathbf{E}}$ at point P .
3. To find the total field at P, we integrate over the whole length of the rod
(b) Clearly, $\overline{\mathbf{E}}$ points along the negative x direction at P (the direction in which a positive point charge would move)
Consider a small element of the rod, dx , at distance x from the origin 8 for a good account of the principle of
 superposition with some relevance to the problem.

The charge on dx is

$$
\mathrm{dq}=\lambda \mathrm{dx}
$$

\Rightarrow Electric field at P due to dx is
5 for a good diagram (even though most of it is given in the question)

$$
\mathrm{d} \overline{\mathbf{E}}=\frac{\lambda \mathrm{dx}}{4 \pi \varepsilon_{0}(\mathrm{x}+\mathrm{r})^{2}} \hat{\mathbf{i}}
$$

The total field is obtained by integrating this over the whole rod: $\mathrm{x}=0$ to $\mathrm{x}=-\infty$.

$$
\overline{\mathbf{E}}=\int_{0}^{-\infty} \mathrm{d} \overline{\mathbf{E}}=\left[\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{0}^{-\infty} \frac{\mathrm{dx}}{(\mathrm{x}+\mathrm{r})^{2}}\right] \hat{\mathbf{i}} \begin{aligned}
& 8 \text { for constructing this } \\
& \text { argument and deriving } \\
& \text { the integral }
\end{aligned}
$$

Therefore

$$
\overline{\mathbf{E}}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\frac{-1}{\mathrm{x}+\mathrm{r}}\right]_{0}^{-\infty} \hat{\mathbf{i}} \Rightarrow \overline{\mathbf{E}}=\left[\frac{\lambda}{4 \pi \varepsilon_{0} \mathrm{r}}\right] \hat{\mathbf{i}} \text { 4 for working out the }
$$

Note: One might get a negative answer if one chose the limits of the integral the other way around (from $-\infty$ to 0). In that case we would just take the absolute magnitude - because WE KNOW
FROM THE DIAGRAM that the electric field points along the $+X$ direction and so is [something positive] $\hat{\mathbf{i}}$.

Method: Consider each thread separately and resolve the field contributions into their x, y and z components.
Consider the y-axis thread: Let its field be $\overline{\mathbf{E}}_{\mathbf{1}}$. It has zero y-component.

~ 4 for method
~ 1 for correct working
and answer
use discretion: this is for
the better students to
show that they have a
well-developed
understanding

Its magnitude is $E_{1}=\frac{\lambda}{2 \pi \varepsilon_{0} r_{1}}$ (derived in lectures)
$\lambda=4 \quad \mathrm{x}=2 \quad \mathrm{z}=2 \quad \mathrm{r}_{1}=\left(2^{2}+2^{2}\right)^{1 / 2}=8^{1 / 2}=2 \sqrt{ } 2$.

So $\quad E_{1}=\frac{1}{\sqrt{2}\left[\pi \varepsilon_{0}\right]}$.
From the diagram, $\quad \overline{\mathbf{E}}_{1}=\mathrm{E}_{1} \cos \theta \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+\mathrm{E}_{1} \sin \theta \hat{\mathbf{k}}$.
$\cos \theta=\sin \theta=2 / r_{1}=1 / \sqrt{ } 2$
So $\quad \overline{\mathbf{E}}_{\mathbf{1}}=\frac{1}{\sqrt{2}\left[\pi \varepsilon_{0}\right]}\left[\frac{1}{\sqrt{2}} \hat{\mathbf{i}}+0 \hat{\mathbf{j}}+\frac{1}{\sqrt{2}} \hat{\mathbf{k}}\right]=\frac{1}{2 \pi \varepsilon_{0}}\left[\hat{\mathbf{i}}+0 \hat{\mathbf{j}}+\hat{\mathbf{k}}_{-}^{-}\right.$

Electric and Magnetic Fields
Similarly, consider the x -axis thread:
Let its field be $\overline{\mathbf{E}}_{\mathbf{2}}$.
It has zero x -component. Its magnitude is

$$
\begin{aligned}
& \mathrm{E}_{2}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}_{2}} \\
& \lambda=4 \quad y=2 \quad \mathrm{z}=2
\end{aligned}
$$

$2 \sqrt{2}$

$$
\mathrm{r}_{2}=\left(\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}=8^{1 / 2}=
$$

$$
\text { So } \quad E_{2}=\frac{1}{\sqrt{2\left[\pi \varepsilon_{0}\right]}}
$$

From the diagram, $\quad \overline{\mathbf{E}}_{2}=0 \hat{\mathbf{i}}+\mathrm{E}_{2} \cos \alpha \hat{\mathbf{j}}+\mathrm{E}_{2} \sin \alpha \hat{\mathbf{k}}$

$$
\cos \alpha=\sin \alpha=2 / r_{2}=1 / \sqrt{ } 2
$$

So $\quad \overline{\mathbf{E}}_{\mathbf{2}}=\frac{1}{\sqrt{2}\left[\pi \varepsilon_{0}\right]}\left[0 \hat{\mathbf{i}}+\frac{1}{\sqrt{2}} \hat{\mathbf{j}}+\frac{1}{\sqrt{2}} \hat{\mathbf{k}}\right]=\frac{1}{2 \pi \varepsilon_{0}}\left[0 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}_{-}^{-}\right.$.

Adding $\overline{\mathbf{E}}_{\mathbf{1}}$ and $\overline{\mathbf{E}}_{\mathbf{2}}$ we get

$$
\overline{\mathbf{E}}=\frac{1}{2 \pi \varepsilon_{0}}\left[\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}_{-}^{-}\right.
$$

