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SECTION A. Attempt answers to all questions.

A1 The Cartesian and polar coordinates of a point in two dimensions are related
to each other by: x = r cos θ and y = r sin θ. Find expressions for r, θ, ∂x

∂r
,

∂y

∂r
, ∂x

∂θ
, ∂y

∂θ
, ∂r

∂x
and ∂r

∂y
. [6]

A2 Evaluate the integral:
∫ 2

y=0

∫ 3

x=0
(xy2) dxdy.

[4]

A3 Write down an expression for the dot product ~u ·~v and vector product, ~u×~v

of two vectors ~u = (ux, uy, uz), ~v = (vx, vy, vz) in terms of their components.

Hence find the cross products of the unit vectors î × ĵ and k̂ × ĵ. [5]

A4 If r is a scalar field r =
√

x2 + y2 + z2, calculate the gradient of r and ∇2r. [4]

A5 Explain what is meant by a conservative vector field. Why is a conservative
vector field always irrotational? [4]

A6 Explain what is meant by a solenoidal vector field. Why can a solenoidal
vector field always be defined as a vector potential? [4]

A7 For the matrices:

A =

(

1 −2
1 4

)

and B =

(

3 −2
2 2

)

.

Calculate the determinants | A | and | B |. Also show that AB is not equal
to BA and that (AB)T = BT AT . [5]

A8 State the conditions that make a matrix (i) symmetric, (ii) orthogonal and
(iii) unitary. In each case illustrate your answer with an example. [6]

A9 What is the trace of a square matrix and what happens to it under a similarity
transformation that diagonalises the matrix? [4]

A10 Find the eigenvalues and corresponding normalized eigenvectors of the ma-

trix:

(

1 4
0 2

)

[4]

A11 Solve the differential equation dy

dx
= x + xy with the boundary condition

y(0) = 1. [4]
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SECTION B. Answer two of the four questions in this section.

B1

(i) Evaluate the double integral:

∫ ∫

R
(a +

√

x2 + y2)dxdy

where R is the region bounded by the circle x2 + y2 = a2 [7]

(ii) Evaluate the line integral

S =
1

2

∮

C
~r × d~r,

in moving a particle once anticlockwise around the unit circle C in the x − y

plane defined by the equation x2 + y2 = a2. [8]

(iii) Evaluate the surface integral:

I =
∫

S
~a · d~S,

where ~a = xî and S is the surface of the hemisphere x2 +y2 +z2 = a2 with z > 0.
[10]

B2

(i) Show that ∇ ·φ ~A = (∇φ) · ~A + φ(∇ · ~A) for any vector field ~A and scalar field
φ. [7]

(ii) A scalar field is defined by φ(r) = e−λr

r
, where ~r = (x, y, z) and λ is a positive

real number. Calculate ∇φ. [7]

(iii) A compressible fluid has time-varying position dependent density ρ(~r, t) and
a velocity field v(~r, t). Show that, for an arbitrary volume V , in which fluid is
neither created or destroyed:

∂ρ

∂t
+ ∇ · (ρ~v) = 0

[11]
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B3

(i) Consider the Hermitian matrix, H =

(

1 −i

i 1

)

, where i2 = −1. Find the

eigenvalues and eigenvectors. Find the normalized eigenvectors of H. Show that
the matrix formed by the normalized eigenvectors as columns is unitary. [8]

(ii) Construct an orthonormal set of eigenvectors for the matrix

B =







1 0 3
0 −2 0
3 0 1





 .

Use your set of eigenvectors to diagonalise the matrix B and verify that the
resulting matrix has the eigenvalues of B on its diagonal. [9]

(iii) Show the set of simultaneous equations:

2x + 4y + 3z = 4

x − 2y − 2z = 0

−3x + 3y + 2z = −7

has a unique solution and find that solution. [8]

B4

(i) Solve the first-order differential equation:

dy

dx
+ 2xy = 4x

giving the general solution. Indicate the constant of integration required and
show how it is determined by the boundary condition, dy(0)

dx
= 4. [7]

(ii) Solve the linear second order differential equation:

d2x(t)

dt2
+ 2β

dx(t)

dt
+ ω2

0x(t) = 0

giving the general solutions and how they differ depending on the relationship
between β and ω0. Indicate the constants of integration required. [7]

(iii) Solve the linear second order differential equation:

d2y

dx2
+ 4y = x2 sin 2x

giving the general solution expressed in terms of sine and cosine functions. Indi-
cate the constants of integration required. [11]
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