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SECTION A. Attempt answers to all questions.

A 1 Draw an Argand diagram and mark the complex number z = a+ ib on it. If
z is expressed in polar form z = reiθ, give expressions for a and b in terms
of r and θ. [4]

A 2 Write down all the cube roots of eiπ/2 in the form a+ ib and also in the form
reiθ. [4]

A 3 Write down an expression for the scalar product, ~u · ~v of two vectors ~u =
(ux, uy, uz), ~v = (vx, vy, vz) in terms of their components. [4]

A 4 Write down an expression for the vector product, ~u × ~v of two vectors
~u = (ux, uy, uz), ~v = (vx, vy, vz) in terms of their components. Hence find

the cross products of the unit vectors ~i ×~j, ~j × ~k and ~i × ~k. [6]

A 5 Evaluate the integral:
∫ 3

x=0

∫ 4

y=0
x2y dydx

[5]

A 6 For the matrices:

P =

(

1 2
3 2

)

and Q =

(

1 2
1 0

)

Calculate the determinants | P | and | Q |. Also show the PQ is not equal
to QP and that P T QT = (QP )T . [6]

A 7 Explain what is meant by a symmetric matrix, an orthogonal matrix, a
unitary matrix and a Hermitian matrix. Give (2 × 2) matrix examples of
each. [6]

A 8 Find the eigenvalues of the matrix:

(

1 1
1 1

)

[5]

A 9 Write down a Fourier series for a function f(x) which is periodic with period
2π for all x. Write down expressions for the coefficients ak and bk for f(x)
in terms of the basic functions cos kx and sin kx, with k = 0, 1, 2, . . .. [5]

A 10 Solve the differential equation dy
dx

= x − 3 with the boundary condition
y(0) = 0. [5]
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SECTION B. Answer two of the four questions in this section.

B1

(i) A complex number is given by z = a + ib. Express 1/(z + i) and 1/z2 in the
form x + iy where x and y are real numbers. [7]

(ii) Find

grad
eλr

r

where r is the modulus of the position vector ~r = (x, y, z) and λ is a positive real
number. [8]

(iii) Using polar coordinates show that

∞
∫

−∞

e−
1

2
x2

dx =
√

2π

[10]

B2

(i) Prove that div curl ~A(x, y, z) = 0 for any vector field ~A(x, y, z). [7]

(ii) Using the identity ei(θ1+θ2) = eiθ1eiθ2 , find expressions for cos(θ1 + θ2) and
sin(θ1 + θ2) in terms cos(θ1), cos(θ2) sin(θ1) and sin(θ2). [8]

(iii) Find the work done,

W =
∮

~F · d~r

in moving a particle once anticlockwise around the unit circle C in the x−y plane
define by the equation x2+y2 = 1, if the force field is given by ~F = (x−3y, 2x+y).

[10]

c© Queen Mary, University of London 2010 Page 2 Please turn to next page



B3

(i) Solve the linear first-order differential equation for radioactive decay

dN(t)

dt
= −κN(t),

giving the general solution. Indicate the constant of integration required and
show how it is determined by the boundary condition, N(t = 0) = N0 [7]

(ii) A function f(x), which is periodic in x with a period of 2π, is given by:

f(x) = { 1 for 0 ≤ x ≤ π
0 for π ≤ x ≤ 2π

sketch the function, and calculate the Fourier coefficients ak and bk of f(x) for
k = 0, 1, 2, 3, 4. [9]

(iii) Consider the square matrix

A =







1 −2 −3
0 1 −4
0 0 1







Calculate the inverse matrix A−1. Show by direct matrix multiplication that
AA−1 is equal to the identity matrix. [9]

B4

(i) Consider the Hermitian matrix

(

1 −i
i 1

)

, where i2 = −1. Find the eigen-

values, the determinant and the trace of H and show how they are related. Find
the normalized eigenvalues of H. [8]

(ii) Find the Fourier Transform F (k) of the Gaussian

f(x) =
1√
σ

e−x2/2σ2

You may use the integral
∫

∞

−∞
e−ax2

ebxdx =
√

π
a
eb2/4a. Sketch the functions f(x)

and F (k) to illustrate their behaviour for large σ. [8]

(iii) Solve the linear second order differential equation

d2x(t)

dt2
+ 6

dx(t)

dt
+ 25x(t) = 0

giving the general solution. Indicate the two constants of integration required for
a real solution. [9]
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