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Electrons in a periodic potential 

Nearly free electron approximation and tight binding: band theory of solids 

Nearly free electron approximation 

We observed at the end of previous lecture that free electron approximation cannot adequately 

describe some of the properties of solids (e.g. semiconductors, insulators, etc.). The origin of that is 

clearly in assumptions that have been made and in particular in neglecting the potential energy term 

in the Hamiltonian of the system. Now we shall bring the potential term back into play using two 

distinct approaches: Nearly free electron approximation and Tight Binding. The former approach 

takes advantage of the potential energy term being a small addition to the overall Hamiltonian of an 

infinite lattice – we start with free electrons and look at scattering by the crystal potential. The latter 

starts from the electronic structure of an atom - we start from isolated atoms and look at the 

interaction as wavefunctions overlap. The general form of the Schrödinger equation is: 

      

where: 

 ̂   ̂   ̂ 

And the new Schrödinger equation in 1D is:  
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The problem is in solving this second order differential equation. Ideally, we would like avoid 
complications by reducing this equation to something simple – e.g. a system of independent linear 
equations. It turns out that this can be done with the aid of Bloch’s theorem and periodicity of the 
potential.  
 

Let’s use an electron travelling wave in the form of      (kinetic energy of        ) and assume 
that this wave is Bragg scattered by the wavevector       , where a is a lattice constant (see 
notes on crystallography).  Clearly the crystal potential is periodic in real space, hence we expect it 
to be periodic in a reciprocal space.  
 
The next step in understanding microscopic behaviour of the system would be to solve the above 
equation to obtain eigenstates and eigenvalues of an infinite crystal Hamiltonian. In order to simplify 
the task we shall introduce and prove the Bloch’s theorem which is based on translational invariance 
of the system.  
 
Bloch’s theorem: 
For any periodic potential  ( )   (   ) the solutions of the Schrödinger equation above can be 
written in the form: 

  
( )     (    )   ( ) 

where k is any allowed wave vector that is obtained for constant potential and uk(r) are arbitrary 
functions that satisfy: 

  ( )    (   ) 
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Any wavefunction that meets this requirement we shall call a Bloch wave. The importance of this 
theorem is in the observation that it imposes a specific condition on the solutions of the Schrödinger 
equation for any periodic potential.  
A different way to write the Bloch’s theorem: The eigenstates of a periodic Hamiltonian can be 
written as a product of a periodic function with a plane wave of momentum k restricted to be in the 
first Brillouin zone: 

  
( )     (    )   ( ) 

furthermore: 
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Proof of Bloch’s theorem  
Substituting         into the Schrödinger equation gives: 
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but since  (  )   (    ) 
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Therefore   
(  ) and   

(    ) represent the solution with the same energy and thus can only 

differ by a phase factor       ,   
(    )     (    )  

(  ). This will be satisfied: 
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where   (  )    (    ) and hence 
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Now let’s use Bloch’s theorem to solve the Schrödinger equation.  
 

[ 
  

  
   ( )] ( )      ( ) 

 
The potential is periodic in real space  ( )   (   ) and hence it is also periodic in reciprocal 
space and we can write: 

 ( )  ∑ ̂ 
 

      

with  ̂  
 

 
∫  ( )        
    

 and        , and   is a unit cell volume. Now we can substitute 

expression for V(r) and for   
( ) taking into account the boundary conditions   

(   )  

   (    )  
( )       

( )     (    )   ( ) (according to the Bloch’s theorem, where   ( ) is 

a periodic function, we can also see that   
( ) is not periodic) into the Schrödinger equation. For a 

linear chain of atoms in 1D we can write   
( )   ∑        : 

Formally, the equation: 
      

leads to: 
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∑
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and moving the last term to the left-hand side we get: 
 

(
    

  
  )   ∑      

 

   

or 

(    )   ∑      
 

   

Now we need to solve  

|

        
      
        

|    

 
to get the energy spectrum.  
 
 
However, near the Brillouin zone boundary (where the behaviour is very much unlike free-electron 

approximation) we can obtain the following solutions. 

1D lattice, 
o   o   o   o   o   o   o   o   o   o   o   o   o   o 

 
 
Now, if we include an interaction between an electron and a lattice site containing an atom than the 
new wavefunctions must include two parts - transmitted and scattered: 

     
        

     

Considering       , we shall have: 
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Now we multiply both parts by                  and integrate over the size of the system using  
 

 
∫                 

 

 

     
 

 
∫                 

 

 

 

we obtain:  
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and solve the following determinant to obtain unique solutions at the Brillouin Zone boundary 

where   
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Giving two solutions:  
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With eigenstates:   
 

√ 
  (
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)   - standing waves. 

Around   
 

 
   solutions are: 

 ( )  
  (   ) 

  
    

    

  
(  

  (   ) 
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Hence we can observe formation of the energy gap with a value of    . 

Summary 

We assumed the following in order to solve Schrödinger equation with a non-zero potential: 

1. Validity of Bloch’s theorem for a periodic system of atoms 

2. Periodicity of the potential in reciprocal space  ( )  ∑  ̂        

These assumptions allowed us to reduce a second order differential equation to a system of linear 

equations whose solutions yielded  ( ) with an evidence of band gap of the value     forming at 

the Brillouin zone boundaries.  

 

Few remarks on the behaviour of  ( ) near the zone boundary. The group velocity of a wave 

packet (remember =ħ) is given by:  
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