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Agenda

“Student” friendly introduction to dark energy
Non-FRW universe, voids and effects of voids on
cosmological observables

Voids as alternatives to dark energy

Using gamma rays to constrain void models

Using gamma rays to constrain other models of dark
energy

Ultra high energy gamma rays and axions



Frieman Robertson Walker Model

Assume Isotropic/homogeneous Universe i.e. Robertson Walker Metric
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Comoving coordinate

Leads to Friedman equation
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How fast is the Universe expanding?
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Intensity, 10-4 ergs / cm?2 sr sec cm-1
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Galactocentric redshift (km/s)
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What’s all the rest???



This tells us the Universe is not just full of baryons

(Or that it has a LOT of spatial curvaturel!)



Relationship between time and redshift

o —1 dz
ap/a(t) =1+ 2 : (1+2)H

-1 dz
lo—1t1 = _
b /u (1+2)H(z)

To get age of universe take t; — 0

H?(z) = H2[Q, (1+ 2 4+ Qo (14 2)° + Q (14 2)7 4+ Q4]
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“The star which burns twice as bright burns half as long”
— from the film Bladerunner



A comparison of star sizes

Red Dwarf Our Sun | Blue-white
Lower limit: 1 solar mass Supergiant
0.08 solar 150 solar masses
masses

Star Spectral Type Mass, M Central Temperature Luminosity, L Estimated
Lifetime (M/L)
(Solar Masses) (10°K) (Solar Luminosities) (10° years)
Spica B* B2V 6.8 25 800 90
Vega AOV 2.6 21 50 500
Sirius ALV 2.1 20 22 1000
Alpha Centauri G2V 1.1 17 1.6 7000
Sun G2V 1.0 15 1.0 10,000
Proxima Centauri M5V 0.1 0.6 0.00006 16,000,000

*The “star™ Spica is, in fact, a binary system comprising a B giant primary (Spica A) and a B2V main-sequence secondary (Spica B).



IUminosity

Time and the HR diagram
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luminosity

Age of the Universe from Globular Clusters
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If the Universe just
contained matter, its
age would be about
9.2 billion years!!

l.e. Not old enough
to contain the stars
Inside It!

Singularity



Constraint on Age of Universe

“1 dz
o —11 =
o /0 (1+2)H(z)
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This tells us the Universe is not just full of matter



Type 1a supernovae as
Standard candles

A

CHANDRA X-RAY

HWAUSTRATION




distance
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If expansion rate was always the same, should get straight line

Towards
BIG BANG
- —>

However, the Universe used to be
denser - expanding faster,
(> (.q < () iecelerating over time.

>

velocity



distance

A What we do see:-

/

deceleration here

acceleration here
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What we should see:-
deceleration

>

velocity
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Acceleration implies negative pressure

e
g — (p + 3P)
a 3

To get positive acceleration we need P < -p/3

In cosmology, pressure tells you how fast the density
of something decreases as the Universe expands

p=—3H (p+ P)



The CMB data
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If the universe is closed,
light rays from opposite
sides of a hot spot bend
toward each other ...

If the universe is flat,
light rays from opposite
sides of a hot spot do not
bend atall ...

If the universe is open,

light rays from opposite
sides of a hot spot bend
away from each other ...

... and as a result, the hot
spot appears to us to be
larger than it actually is.

... and so the hot spot
appears to us with its true
size.

... and as a result, the hot
spot appears to us to be
smaller than it actually is.




What it really looks like

Standard Ruler: Angular Scale
1° arc measurement of 90° 2° 0.6° 0.2°
dominant energy spike g ! ' ' 3
8000 F /TN -
/| \ OPEN
7000 | / \ 3
: / \ ;

6000 F
5000 |

4000 E

Anisotropy Power

3000 E

2000 E

1000 £

0: 1 | R TR N N N A A N | 1 1 1 1 1 1 ||I:I

10 100 500 1000
Multipole moment 1




Baryonic Acoustic
Oscillation Data -

Correlation function
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Constraint on the Equation of State
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Note, this assumes the equation of state is constant.
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DOES DARK ENERGY
HAVE CONSTANT .

EQUATION OF STATE? *

Not neccessarily! 1
Phantom means

P >0 —1

— 2

Z

Fairbairn and Goobar, ~
— .U

astro-ph/0511029

- Is phantom now
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Different energies and how they dilute
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Why are we here? (cosmic coincidence problem)



fraction by density

Cosmic Coincidence Problem
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The energy content of the Universe
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distance

A

Basic Issue with Expansion History

What we do see:-

acceleration here

\

/

deceleration here

APPROXIMATION

What we should see:-
deceleration

>

velocity
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On small scales,
isotropic,
Walker metric.
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Evolution of a Spherical Void

We assume spherical void and use Lemaitre-Tolman-Bondi metric

ds® = —dt* + S?(r,t)dr? + R*(r,t)(d6? + sin*0do?)

R™2(r.t)

#

S%(r.t) = —
1) curvature

‘Friedman’ equation for Lemaitre-Tolman Bondi metric

1., GM(@r) 1,
—R? — — — —AR*=E(r
2" T R(rt) 3 (r)
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Void Models as Alternatives to Dark Energy
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1000

underdensity at z

To explain expansion without dark energy
we need bigger voids...
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-..really quite big voids indeed
(although initial density contrast is not TOO bad)

ol

1 |
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A, 1,(Mpe)
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Pros and Cons of void models

Pros

Cons

* can explain supernovae without dark energy
* require complicated power spectra
* need to be near centre of void

&
e difficult to fit peaks in CMB

e usually still need local value of H to be low

/

PHILOSOPHICAL / OCCAM’S RAZOR TYPE ARGUMENTS -
NEED TO TRY HARDER TO KILL MODEL IN ORDER TO TEST IT




Testing void models with TeV Photons
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A low level of extragalactic background light
as revealed by ~-ravs from blazars Nature 440:1018 (2006)

Quasar 3C279
/=0.536

- Very-High-Energy Gamma Rays from a Distant Quasar:
How Transparent Is the Universe?

The MAGIC Collaboration®

Science 320, 1752 (2008): DOI: 10.1126/science. 1157087



Extragalactic Background Light
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Transparency of

Universe at
different
wavelengths
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Gamma Ray Horizon

Opacity For Gamma Rays
T>1
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Modelling the background light for

different cosmologies
We followed quite closely the approach of Finke et al. arXiv:0905.1115

. Treat stars as black bodies

. Obtain approximate formulae for radius and temperature of star of mass M
as a function of time (Eggleton, Fitchett and Tout provide us with this in the
appendix of a paper on binaries from the end of the 1980s)

. Assume an initial mass function, Salpeter will do for now, single power law.
. Have stars being created at different rates throughout the history of the
Universe.

. Star light is partially absorbed, especially at high frequencies and re-
emitted in the infra red and microwave

. At any given redshift, light is due to combination of light being produced
then, and light being produced at earlier times which is then redshifted.



Spectrum produced by our code
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Data is from various sources, blue data is observed spectrum, green data is lower limits.
Here we haven’t fit this spectrum on the left, we just used the star formation rate data.
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Our exact procedure

Evolve stellar population over time and put reddened spectrum into grid.
Put integral of luminosity lost to reddening at each time into a vector.

Rescale the ?FR Fit the rescaled
data for this SFR data
cosmology

Pick a cosmology
Getzvst

Send photon Integrate grid Assign redshifts
through the (redshift affects to each time bin
whole thing L and v) in the stellar grid

See if it arrives at z=0, write paper, accept universal plaudits from peers,
STFC, EU, Nobel committee , Her Madge etc etc.
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Results

arXiv:1111.4577
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What we need to do to investigate this further

* More data points! (obviously) should get more in a
matter of few weeks, to get great coverage maybe a
month. Will see if | can speed up code.

* Errors! Many errors not yet taken into account. Need
better grip on errors produced by gamma ray
detectors. Also modelling errors, what is the error
induced due to my assumptions, especially initial mass
function and metallicity. Blue stage of high mass stars
life very important for opacity. Also errors on fit to SFR
data!



Axions

*Originally motivated as a solution to the strong CP problem

*Spin zero pseudo-scalar with induced coupling to the photon

1 AN 2 2 L a T 1 1%
L = 5(0‘ ad,a —m-a”) — ZMEWF" — ZFWF“



Mixing in constant background

Mixing angle (strength) When these terms

dominate you have
maximal mixing

Oscillation length 2w

Ay = —
- 27 M M

\/(Ap — Am)2 + 4A3, B w2




M (GeV)
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Shining light through walls

=3 excl. by this work
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— CL 95%

— — CL99.9%

m, (meV)

Robilliard et al, arXiv: 0707.1296
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produced in the sun
and turn them back into
photons down here



CAST cern-axion-solar-telescope
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Gamma Ray Horizon

Opacity For Gamma Rays
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Possible ALP explanation : Roncadelli 07074312

PO

Observed flux (%)
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Cosmic rays
exist with
much higher
energies
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High energy protons must come from nearby
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Pierre Auger Observatory, Argentina
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PA arrival coincidences with close objects
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Light collection/focussing

by 3.72m? (effective area)
spherical mirror //

L
=
i

— Focal plane detector a& Pt
\ | with 1° pixels (PMT) hﬂ%&:?‘/wm
\ | in a 16x16 hexagonally mg){g
close-packed grid wil &~ o
/ UV photons “”"%SZWJ
| T
A o
RO

HiREs — BL LAcC CORRELATION RESULTS: FRACTION
JF OF SIMULATED HIRES SETS WITH STRONGER
CORRELATION SIGNAL.

Source Sample (# Obj.) All Energies FE > 10EeV
“BL” (157) 2 x 1074 2 x 1074
“HP” (47) 0.3 6 x 1073
“BL”—'—“HP” (204) 5 % 10—4 10—5

NoTke. — Correlations are with confirmed BL Lacs in
Table 2 of the Veron 10th Catalog (Veron-Cetty & Veron
2001), classified as either “BL” or “HP,” with m < 18.

astro-ph/0507120

Possible correlation
with much more
distant objects



 Lets see if ALPs can serve as
‘ hlgh energy cosmlc rays

Albuquerque and Chou arXiv:1001.0972



Old idea...

Super-GZK Photons from Photon-Axion Mixing

Csaba Cséki®, Nemanja Kaloper?, Marco Peloso® and John Terning®

hep-ph/0302030



Linearised wave equation

Al
10,V =—(w+ M)V ; v = AH

a

See, e.g. Raffelt and Stodolsky 1987



Mixing Matrix

AL 0 0 A =
0 IVaRyANS Ap =
—
A, = Mo i
2w 2 =
p
AL _ B
2M
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Maximal Mixing 2 A <o,

w > 1 TeV -3
w > 1017 eV L0g10(Ne/CM )



M=10"" GeV axion

Mixing
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Different Mixing Scenarios

No. m IGMF w strong mixing in dominant
eV G eV BL fil IG MW conversion
1 ~100" <100 10" + — — + source+MW
v - + - - fil4fil
2 ~1077 ~1077 10% + - -  + source+MW
10" - + + - IGMF+IGMF
3 ~107° any 10 4+ — - — no explanation
0" - + - - fil4fil

(IGMF if strong)
=+ IGMF+IGMF
- IGMF+IGMF

4 <1077 ~ 1077 10'?
10" —

_|_

+ +
-+

Most scenarios have a way of the photons getting through Fairbairn et al 0901.4085



Mixing Matrix

AL 0 0 A =
0 IVaRyANS Ap =
—
A, = Mo i
2w 2 =
p
AL _ B
2M




Summary and Conclusions

* While contrived, void models can (just about) explain expansion
history

* Would like another way of testing them
* y-ray transparency of void Universes much less than ACDM

* Observations of blazars may rule out void models, if we can
parametrise errors in our EBL models

*Transperency of the Universe also has interesting implications for
the physics of axion-like particles.



