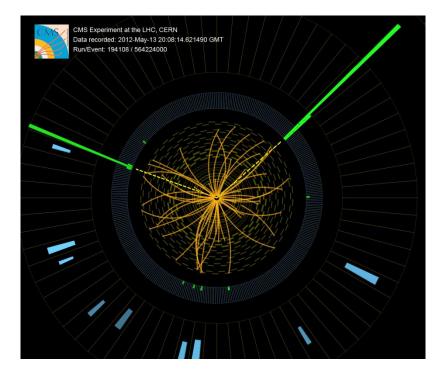


Run/Event: 194108 / 564224000 Lumi section: 575

140 $m_{\gamma\gamma}$ (GeV) Jonathan Hays QMUL 12th October 2012


S+B Fit

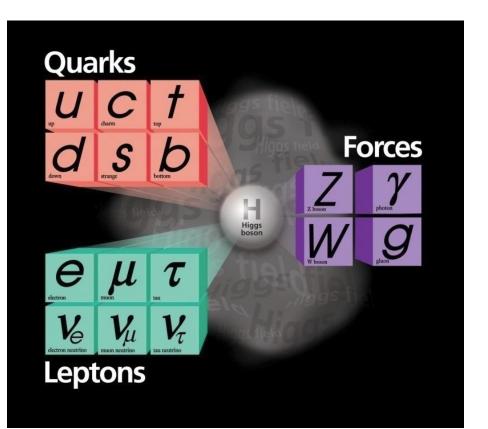
±1σ ±2σ

Bkg Fit Component

Outline

Introducing the scalar boson Experimental overview Where and how to search Higgs properties Prospects and summary

The Scalar boson

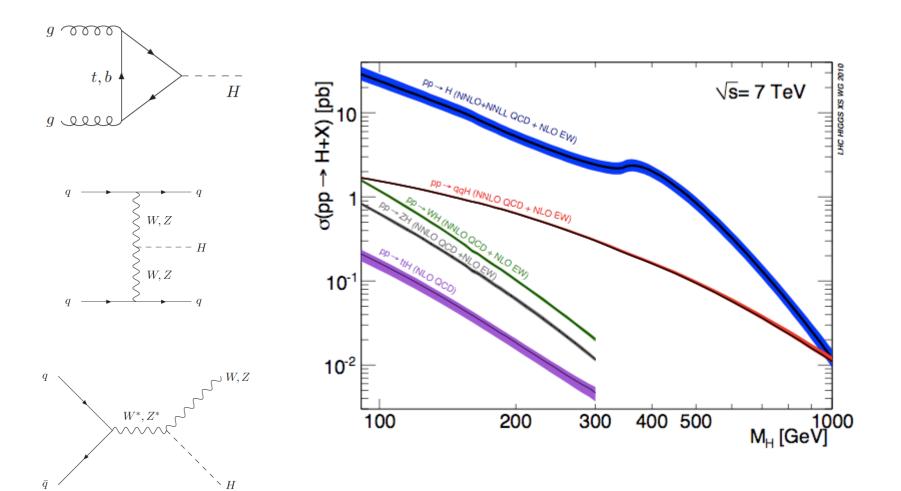

Makes the SM work

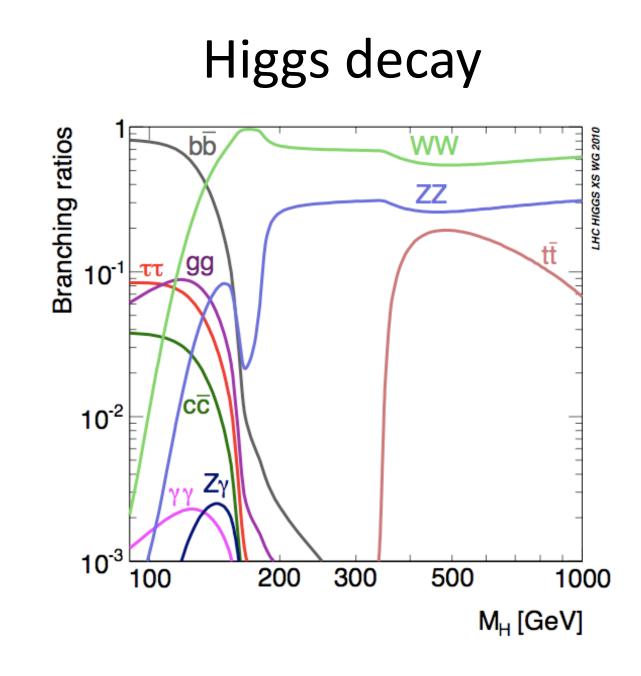
allows massive W & Z

allows fermion masses

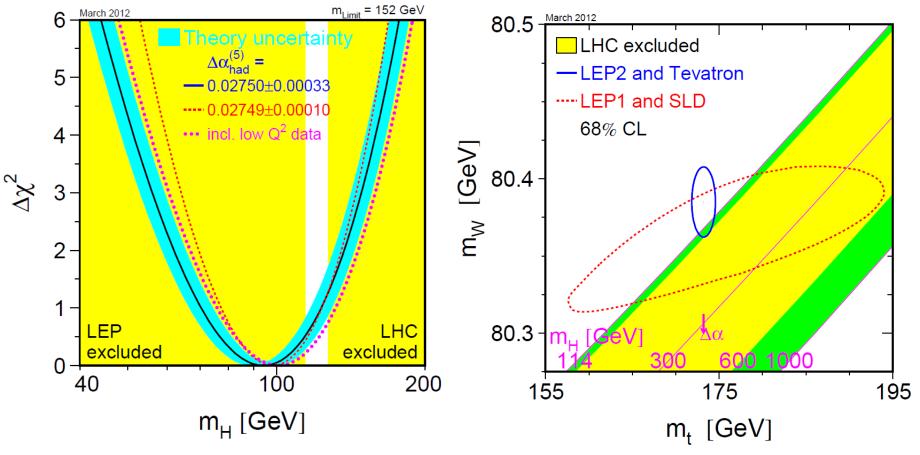
Testable prediction of Electroweak theory

Scalar Higgs Boson


SM Higgs bosons


Identifying a SM Higgs boson or "how to get Peter Higgs (and others) a Nobel prize" ^(C)

Neutral Mass consistent with EWK fits Spin-0 Correct couplings



Production at the LHC

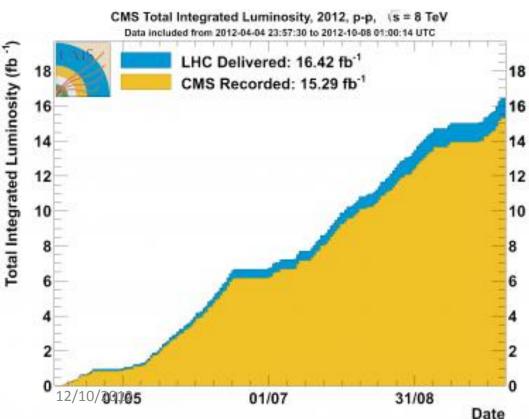
Indirect Constraints on the Higgs

Latest indirect constraints prior to discovery...

12/10/2012

How to find a Higgs

Lots of energy to make them


Sensitive detector(s)

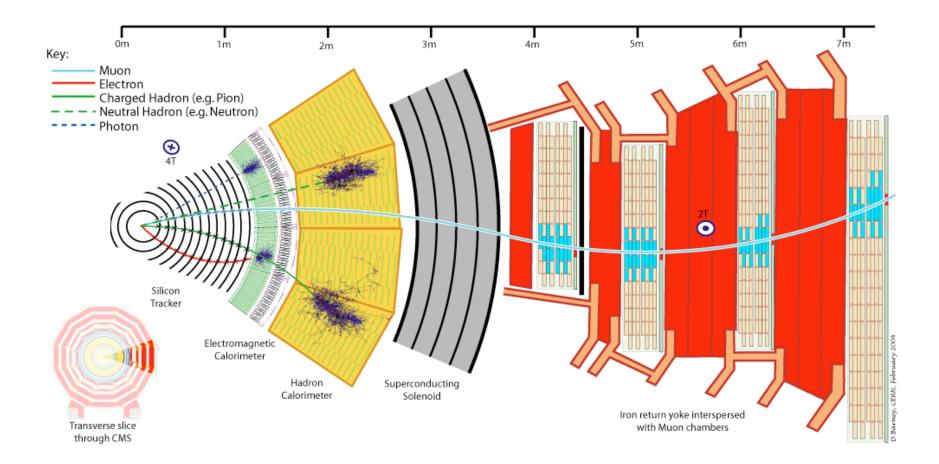
Some smart people to make it work and analyze the data

Look everywhere you can

Large Hadron Collider

Proton-proton collider Designed to run at \sqrt{s} =14 TeV

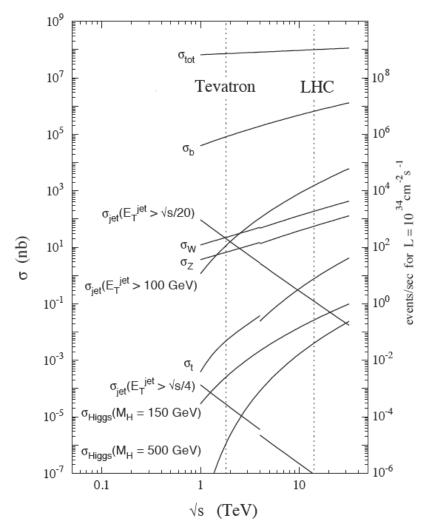
7TeV in 2011 8TeV in 2012


About 10fb⁻¹ data in results here Another 10fb⁻¹ already recorded

9

Compact Muon Solenoid

Compact Muon Solenoid

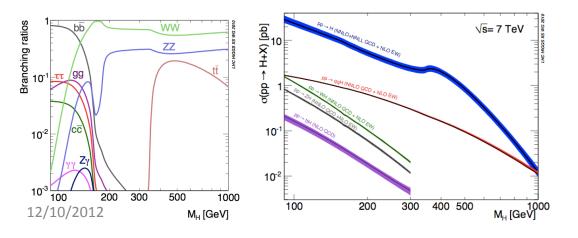

Triggering

Event rates of Higgs several orders of magnitude smaller than total cross section

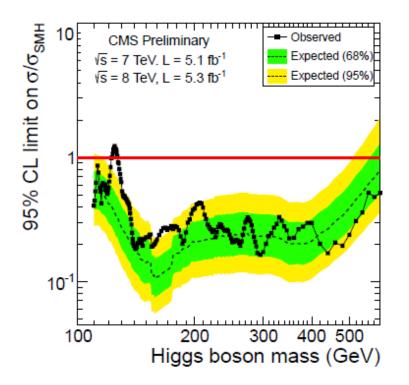
Reading out every event would be TB/s !

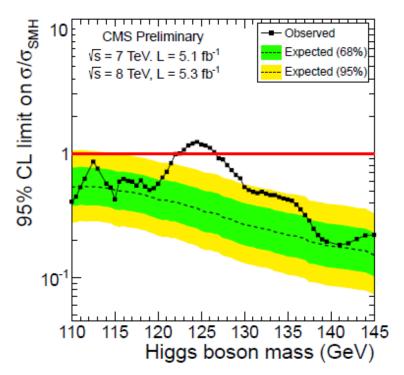
Need a good trigger system to cut the rate down and reject backgrounds

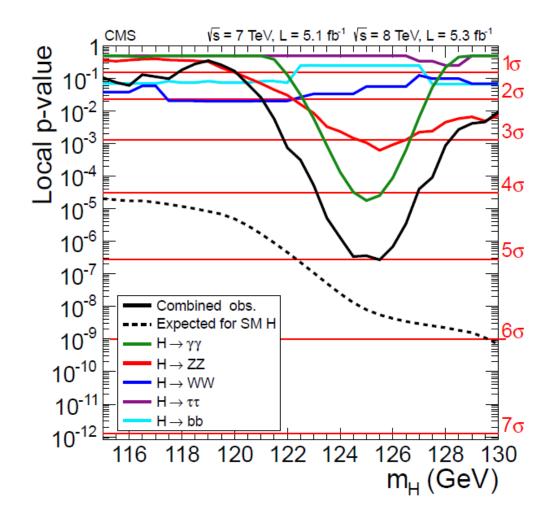
Two level solution at CMS L1 fast decision, factor 1000 reduction HLT down to about 100 Hz



Over 4000 collaborators now on CMS!

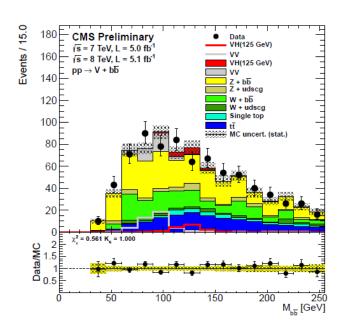

Channel Overview

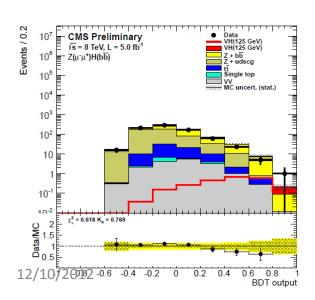

Analyæs			No. of	$m_{\rm H}$ range	$m_{\rm H}$ Lumi (fb ⁻¹)		Ref	
H decay	H prod	Exclusive final states	channels	(GeV)	resolution	7 TeV	8 TeV	
0.0	untagged	$\gamma \gamma$ (4 diphoton classes)	4	110 - 150	1-2%	5.1	5.3	[73]
$\gamma\gamma$	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (low or high m_{jj} for 8 TeV)	1 or 2	110 - 150	1-2%	5.1	5.3	[73]
	VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \otimes (\text{low or high } p_T^V)$	10	110 - 135	10%	5.0	5.1	[74]
bb	ttH-tag	$(\ell \text{ with } 4,5,\geq 6 \text{ jets}) \otimes (3,\geq 4 b \text{-tags});$	9	110-140		5.0		[75]
	milliag	(ℓ with 6 jets with 2 <i>b</i> -tags); ($\ell\ell$ with 2 or \geq 3 <i>b</i> -tagged jets)				20		10
	0/1-jets	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times$	16	110 - 145	20%	4.9	5.1	[76]
		(low or high $p_T^{\tau\tau}$) × (0 or 1 jets)						
$H \rightarrow \tau \tau$	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) + (jj)_{VBF}$	4	110 - 145	20%	4.9	5.1	[76]
	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu \tau_h, e\mu)$	8	110 - 160		5.0	-	[77]
	WH-tag	$\tau_h ee, \tau_h \mu \mu, \tau_h e \mu$	3	110 - 140		49	-	[78]
$WW \rightarrow \ell \nu qq$	untagged	$(ev, \mu v) \otimes ((ij)_W \text{ with } 0 \text{ or } 1 \text{ jets})$	4	170-600		5.0	5.1	[79, 80]
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \otimes (0 or 1 jets)	4	110 - 600	20%	4.9	5.1	[81, 82]
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1 or 2	110 - 600	20%	49	5.1	[81, 82]
$WW \rightarrow \ell \nu \ell \nu$	WH-tag	3631	1	110 - 200		4.9	-	[83]
$WW \rightarrow \ell \nu \ell \nu$	VH-tag	$\ell \nu \ell \nu + (jj)_V$ (DF or SF dileptons)	2	118 - 190		4.9	-	[84]
$ZZ \rightarrow 4\ell$	inclusive	4e, 4µ, 2e2µ	3	110-600	1-2%	5.0	5.3	[85]
$ZZ \rightarrow 2\ell 2\tau$	inclusive	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu \tau_h, e\mu)$	8	200-600	10-15%	5.0	5.3	[85]
$ZZ \rightarrow 2\ell 2q$	indusive	$(ee, \mu\mu) \times ((jj)_Z \text{ with } 0, 1, 2 \text{ b-tags})$	6	∫ 130–164	3%	4.9	-	[86]
,	Indusive		Ŭ	200-600				
$ZZ \rightarrow 2\ell 2\nu$	untagged	$((ee, \mu\mu) \text{ with MET}) \otimes (0 \text{ or } 1 \text{ or } 2 \text{ non-VBF jets})$	6	200-600	7%	4.9	5.1	[87]
$ZZ \rightarrow 2\ell 2\nu$	VBF-tag	$(ee, \mu\mu)$ with MET and $(jj)_{VBF}$	2	200-600	7%	49	5.1	[87]


	untagged	VBF-tag	VH-tag	ttH-tag
$H \rightarrow \gamma \gamma$	✓	 Image: A set of the set of the		
$H \rightarrow bb$			~	✓
$H \rightarrow \tau \tau$	✓	~	~	
$H \rightarrow WW$	 ✓ 	~	~	
$H \rightarrow ZZ$	 ✓ 			

Higgs Discovery?

Higgs? Discovery

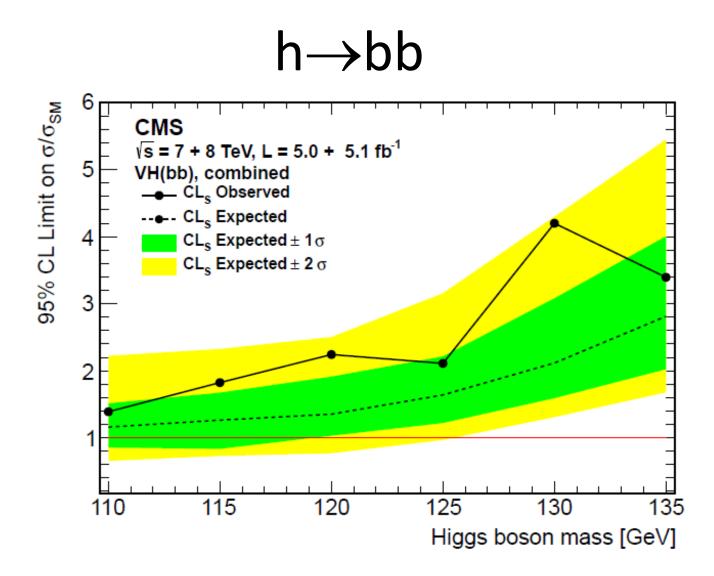

h→bb


Associated production pp->VH Leptonic (e,μ,υ) decays give clean signature

Events classification: lepton species and Higgs boost

Require:

isolated leptonsmissing transverse energy (neutrinos)2 b-tagged jets

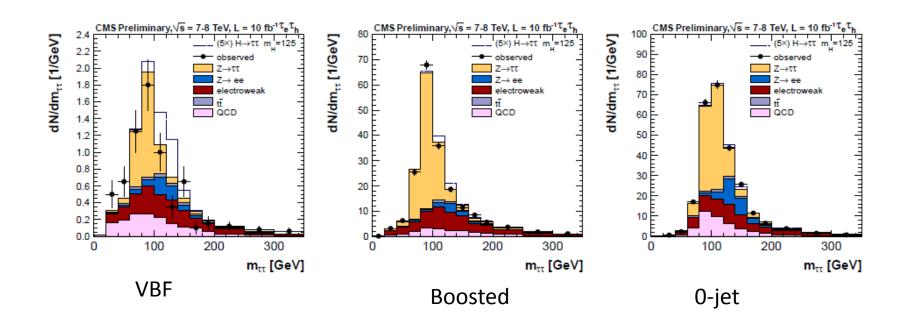


Boosted Decision Tree used to discriminate between signal and backgrounds

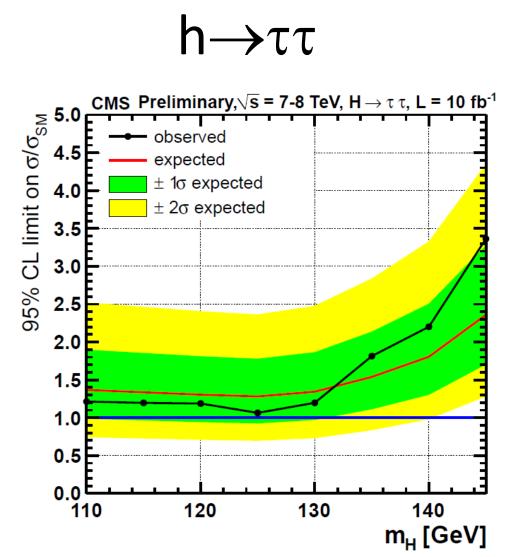
Output distribution of the BDT used in statistical analysis

Main backgrounds: W/Z+jets and top pairs – rates from control samples

Additional channel included sensitive to ttH production



Not quite sensitive to SM yet, next update should achieve that


$h \rightarrow \tau \tau$

Select events with one or more leptonic tau decays: categorize according to flavour: $e\mu$, $e\tau_h \mu \tau_h$

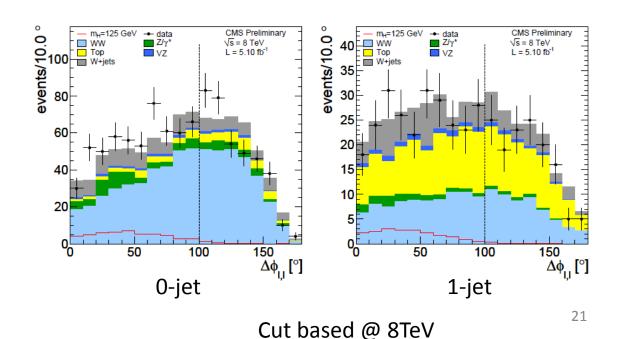
Further subdivide into 3 categories: VBF : + 1 forward, 1 backward jets Boost : +1 high pT jet 0-jet: remaining events

Dominant backgrounds estimated from control samples in data

Close to SM sensitivity and no sign of a Higgs – though be aware of the size of the bands! Next updates should prove interesting!

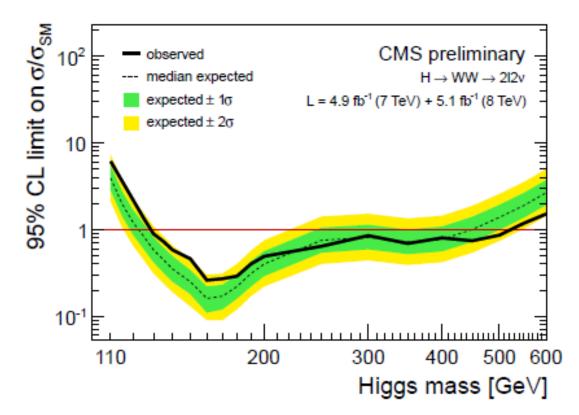
12/10/2012

$(W/Z)h\rightarrow WW(W/Z)$


Four basic channels: 2l2v, lvjj, 3l3v, 2l2vjj

Classify events according to lepton flavour and charge and jet multiplicity

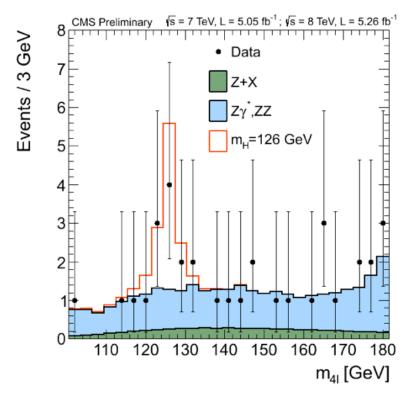
Select events with isolated leptons, missing transverse energy and up to 2 jets

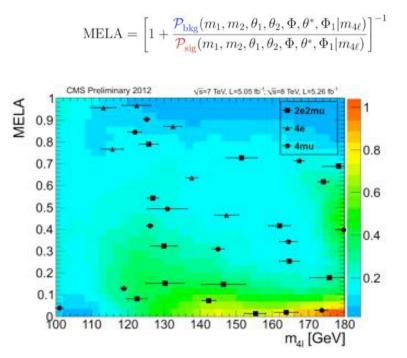

Main backgrounds come from diboson production, top pairs and W+jets depending on category. Data driven for major contributions

MVA techniques, eg BDTs and NN, used to enhance sensitivity as well as cut based selection

$h \rightarrow WW \rightarrow 2I2\upsilon$

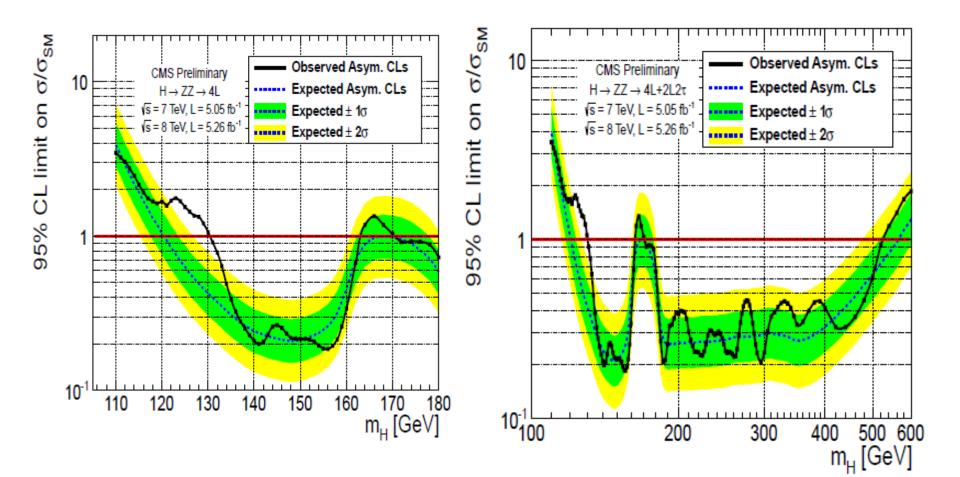
Sensitivity dominated by 2l2v




SM like Higgs excluded across much of the mass range. Broad excess in low mass region compatible with SM Higgs

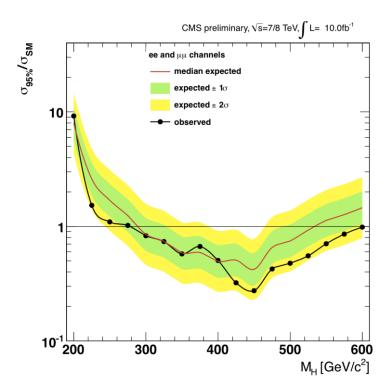
12/10/2012

Golden channel: $h \rightarrow ZZ \rightarrow 4I$


4 isolated leptons give extremely clean signature Excellent energy resolution gives narrow signal peak

Angular analysis using matrix-element likelihood approach enhances sensitivity

Golden channel: $h \rightarrow ZZ \rightarrow 4I$



Other ZZ channels

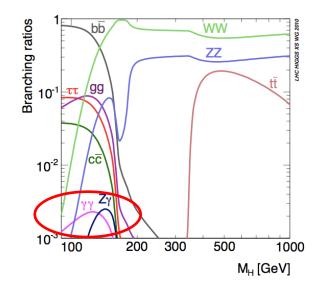
Look for two leptons and large missing transverse energy

Table 33: Expected number of signal and background events for an integrated huminosity of 5.0 fb⁻¹ at 8TeV after applying the full higgs selection compared to the number of observed events in data. Uncertainties for ZZ/WZ/Z+Jets and non-resonant backgrounds as well as for signal include the statistical and systematic components.

channel	ZZ	$WZ \rightarrow 3l\nu$	$Z \rightarrow ll(data)$	Top/WW/W(data)	Total	ggH(200)	qqH(200)	Data
ee = 0 jets	7.0 ± 0.2	4.4 ± 0.1	$1.6 \pm 0.3 \pm 1.6$	$61 \pm 1.5 \pm 1.5$	$19.1 \pm 1.5 \pm 2.2$	0.003 ± 0.003	0.005 ± 0.005	13
$\mu\mu = 0$ jets	12.0 ± 0.3	7.2 ± 0.2	$3.2 \pm 0.6 \pm 3.2$	$11.0 \pm 2.6 \pm 2.7$	$33.3 \pm 2.7 \pm 4.2$	0.012 ± 0.008	0.0004 ± 0.0003	27
ee = 1 jets	3.7 ± 0.2	3.4 ± 0.1	$7.4 \pm 0.7 \pm 7.4$	$11.2 \pm 2.0 \pm 2.8$	$25.7 \pm 2.2 \pm 7.9$	0.4 ± 0.2	0.08 ± 0.01	32
$\mu\mu = 1$ jets	6.2 ± 0.2	5.2 ± 0.1	$12.3 \pm 1.2 \pm 12.3$	$20.1 \pm 3.6 \pm 5.0$	$43.8 \pm 3.8 \pm 13.3$	0.6 ± 0.2	0.14 ± 0.02	49
$ee \ge 2jets$	1.3 ± 0.1	1.02 ± 0.06	$6.0 \pm 0.6 \pm 6.0$	$7.1 \pm 1.6 \pm 1.8$	$15.4 \pm 1.7 \pm 6.2$	0.3 ± 0.1	0.18 ± 0.03	28
$\mu\mu \ge 2jets$	2.3 ± 0.1	1.57 ± 0.07	$10.3 \pm 1.0 \pm 10.3$	$12.8 \pm 2.8 \pm 3.2$	$27.0 \pm 3.0 \pm 10.8$	0.5 ± 0.1	0.23 ± 0.03	34
ee vbf	0.04 ± 0.02	0.04 ± 0.01	0.21 ± 0.08 ± 0.21	$0.34 \pm 0.34 \pm 0.09$	$0.6 \pm 0.4 \pm 0.2$	0.010 ± 0.007	0.11 ± 0.02	0
µµ vbf	0.04 ± 0.02	0.04 ± 0.01	0.4±0.1±0.4	$0.6 \pm 0.6 \pm 0.2$	$1.1 \pm 0.6 \pm 0.4$	0.0006 ± 0.0006	0.18 ± 0.02	1
channel	ZZ	$WZ \rightarrow 3l\nu$	$Z \rightarrow II(data)$	Top/WW/W(data)	Total	ggH(300)	qqH(300)	Data
ee = 0 jets	7.0 ± 0.2	3.5 ± 0.1	$0.8 \pm 0.2 \pm 0.8$	$3.7 \pm 1.2 \pm 0.9$	$15.1 \pm 1.2 \pm 1.2$	3.1 ± 0.3	0.11 ± 0.01	11
$\mu\mu = 0$ jets	11.3 ± 0.3	5.2 ± 0.1	$1.6 \pm 0.4 \pm 1.6$	67±2.1±1.7	$24.9 \pm 2.1 \pm 2.3$	5.6 ± 0.5	0.18 ± 0.01	14
ee = 1 jets	4.2 ± 0.2	2.8 ± 0.1	2.6±0.3±2.6	$2.7 \pm 1.0 \pm 0.7$	$12.3 \pm 1.1 \pm 2.7$	5.3 ± 0.4	0.74 ± 0.03	14
$\mu\mu = 1$ jets	6.3 ± 0.2	4.1 ± 0.1	$4.4 \pm 0.5 \pm 4.4$	$49 \pm 1.7 \pm 1.2$	19.6 ± 1.8 ± 4.5	7.4 ± 0.5	0.98 ± 0.03	23
$ee \ge 2jets$	1.18 ± 0.09	0.71 ± 0.05	$1.2 \pm 0.2 \pm 1.2$	$0.7 \pm 0.5 \pm 0.2$	$3.8 \pm 0.5 \pm 1.2$	2.0 ± 0.3	0.39 ± 0.02	12
$\mu\mu > 2 jets$	2.0 ± 0.1	1.14 ± 0.06	$2.1 \pm 0.3 \pm 2.1$	$1.2 \pm 0.9 \pm 0.3$	$6.5 \pm 0.9 \pm 2.1$	2.8 ± 0.3	0.47 ± 0.02	12
ee vbf	0.04 ± 0.02	0.04 ± 0.01	$0.21 \pm 0.08 \pm 0.21$	$0.34 \pm 0.34 \pm 0.09$	$0.6 \pm 0.4 \pm 0.2$	0.17 ± 0.06	0.50 ± 0.02	0
µµ vbf	0.04 ± 0.02	0.04 ± 0.01	$0.4 \pm 0.1 \pm 0.4$	$0.6 \pm 0.6 \pm 0.2$	$1.1 \pm 0.6 \pm 0.4$	0.14 ± 0.05	0.66 ± 0.03	1
channel	ZZ	$WZ \rightarrow 3l\nu$	$Z \rightarrow ll(data)$	Top/WW/W(data)	Total	ggH(400)	qqH(400)	Data
ee = 0 jets	2.3 ± 0.1	0.71 ± 0.05	$0.15 \pm 0.05 \pm 0.15$	$0.17 \pm 0.17 \pm 0.04$	3.3 ± 0.2 ± 0.2	2.1 ± 0.2	0.045 ± 0.007	2
$\mu\mu = 0$ jets	2.9 ± 0.2	1.14 ± 0.07	$0.4 \pm 0.1 \pm 0.4$	$0.30 \pm 0.31 \pm 0.08$	4.8±0.4±0.4	3.1 ± 0.3	0.067 ± 0.008	3
ee = 1 jets	1.5 ± 0.1	0.71 ± 0.05	0.7±0.1±0.7	$0.17 \pm 0.17 \pm 0.04$	3.1±0.3±0.7	3.8 ± 0.3	0.31 ± 0.02	3
$\mu\mu = 1$ jets	2.3 ± 0.1	1.04 ± 0.06	$1.1 \pm 0.2 \pm 1.1$	$0.30 \pm 0.31 \pm 0.08$	4.8±0.4±1.1	5.5 ± 0.4	0.49 ± 0.02	6
$ee \ge 2jets$	0.56 ± 0.06	0.25 ± 0.03	$0.49 \pm 0.08 \pm 0.49$	$0.17 \pm 0.17 \pm 0.04$	$1.5 \pm 0.2 \pm 0.5$	1.6 ± 0.2	0.119 ± 0.010	0
$\mu\mu \ge 2 jets$	0.79 ± 0.07	0.37 ± 0.04	$0.8 \pm 0.1 \pm 0.8$	$0.30 \pm 0.31 \pm 0.08$	$2.2 \pm 0.3 \pm 0.8$	2.2 ± 0.2	0.21 ± 0.01	5
ee vbf	0.04 ± 0.02	0.04 ± 0.01	$0.21 \pm 0.08 \pm 0.21$	$0.34 \pm 0.34 \pm 0.09$	$0.6 \pm 0.4 \pm 0.2$	0.07 ± 0.03	0.31 ± 0.02	0
µµ vbf	0.04 ± 0.02	0.04 ± 0.01	$0.4 \pm 0.1 \pm 0.4$	$0.6 \pm 0.6 \pm 0.2$	$1.1 \pm 0.6 \pm 0.4$	0.16 ± 0.06	0.45 ± 0.02	1
channel	ZZ	$WZ \rightarrow 3l\nu$	$Z \rightarrow ll(data)$	Top/WW/W(data)	Total	ggH(600)	qqH(600)	Data
ee = 0 jets	0.61 ± 0.08	0.15 ± 0.02	$0.008 \pm 0.008 \pm 0.008$	$0.17 \pm 0.17 \pm 0.04$	0.94 ± 0.19 ± 0.04	0.28 ± 0.05	0.018 ± 0.002	0
$\mu\mu = 0$ jets	0.88 ± 0.09	0.22 ± 0.03	$0.04 \pm 0.08 \pm 0.04$	$0.30 \pm 0.31 \pm 0.08$	$1.45 \pm 0.33 \pm 0.09$	0.46 ± 0.06	0.029 ± 0.002	0
ee = 1 jets	0.53 ± 0.06	0.15 ± 0.02	$0.22 \pm 0.05 \pm 0.22$	$0.17 \pm 0.17 \pm 0.04$	1.1 ± 0.2 ± 0.2	0.95 ± 0.08	0.134 ± 0.005	1
$\mu\mu = 1$ jets	0.86 ± 0.08	0.26 ± 0.03	$0.37 \pm 0.09 \pm 0.37$	$0.30 \pm 0.31 \pm 0.08$	1.8 ± 0.3 ± 0.4	1.09 ± 0.09	0.171 ± 0.006	2
$ee \ge 2jets$	0.27 ± 0.04	0.05 ± 0.01	$0.10 \pm 0.04 \pm 0.10$	$0.17 \pm 0.17 \pm 0.04$	$0.6 \pm 0.2 \pm 0.1$	0.39 ± 0.05	0.049 ± 0.003	0
$\mu\mu \ge 2 jets$	0.33 ± 0.04	0.05 ± 0.01	$0.17 \pm 0.06 \pm 0.17$	$0.30 \pm 0.31 \pm 0.08$	0.9 ± 0.3 ± 0.2	0.61 ± 0.06	0.059 ± 0.003	1
ee vbf	0.04 ± 0.02	0.04 ± 0.01	$0.21 \pm 0.08 \pm 0.21$	$0.34 \pm 0.34 \pm 0.09$	0.6±0.4±0.2	0.05 ± 0.01	0.130 ± 0.005	0
µµ vbf	0.04 ± 0.02	0.04 ± 0.01	$0.4 \pm 0.1 \pm 0.4$	$0.6 \pm 0.6 \pm 0.2$	1.1 ± 0.6 ± 0.4	0.06 ± 0.02	0.172 ± 0.006	1

Golden Low Mass Channel: $h \rightarrow \gamma \gamma$

Tiny branching ratio but very clean signature Two isolated high pT photons


Narrow resonance – performance completely driven by the detector

Was the benchmark channel for the ECAL design

ECAL TDR

Table 12.7: Signal significance for $H\to\gamma\gamma~(m_H$ = 100 GeV)

Integrated luminosity	Signal significance		
30fb^{-1} taken at $10^{33} \text{ cm}^{-2} \text{s}^{-1}$	5.0		
100fb^{-1} taken at $10^{34} \text{ cm}^{-2} \text{s}^{-1}$	8.3		

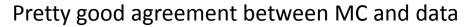


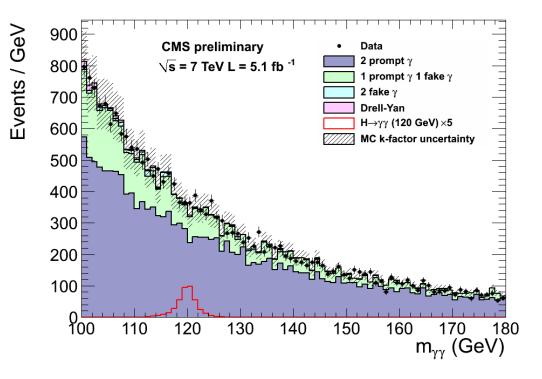
In principle a simple analysis:

look for a bump in diphoton mass spectrum accumulate data and wait for it to appear!

 $h \rightarrow \gamma \gamma$

Slightly more complicated than making a mass plot and waiting for a signal!

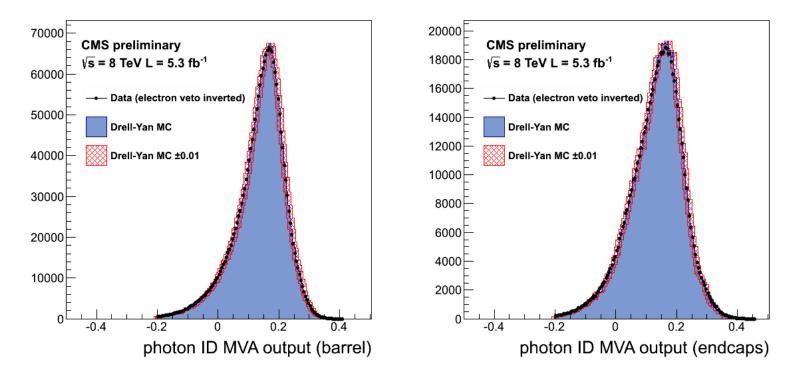

Event selection


Select events with 2 isolated photons, with cuts on pt/M

2 high-pt jets plus high jet mass for VBF search

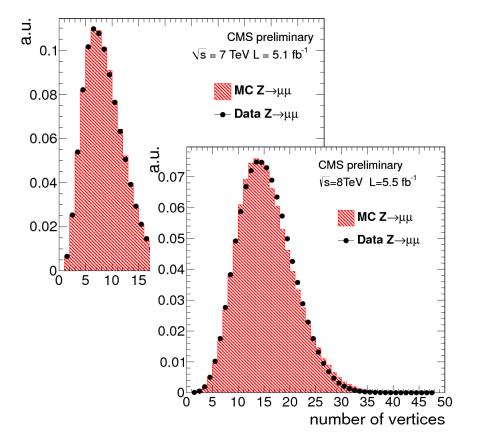
Split events into different categories to optimize sensitivity

Look for a bump on a smoothly falling backgound

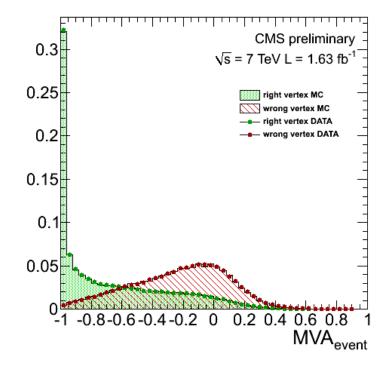


Photon ID

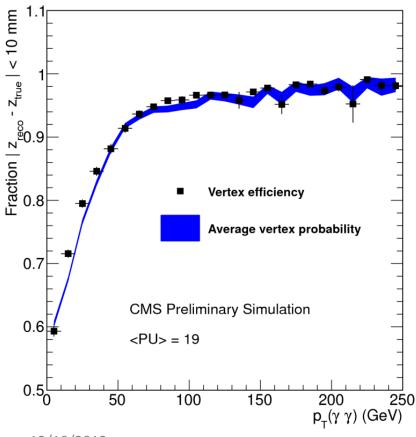
Boosted decision tree trained to separate prompt photons from π^0


Use isolation, shower shape and related

Efficiency measured in Z \rightarrow ee with corrections to photons derived from MC ^{12/10/2012}


Vertexing

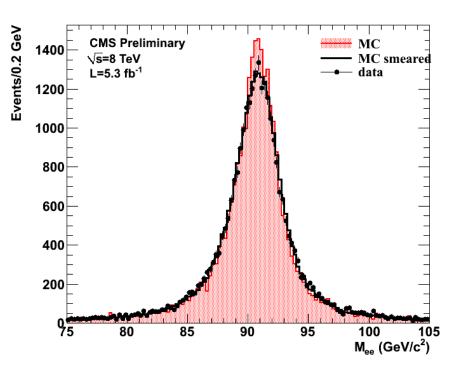
Correct vertex needs to be identified precision < 10mm


BDT based vertexing algorithm based on event kinematics

Gives vertex + event-by-event error estimate

Vertexing

Methods validated on $Z \rightarrow \mu \mu$ events by throwing away muon tracks

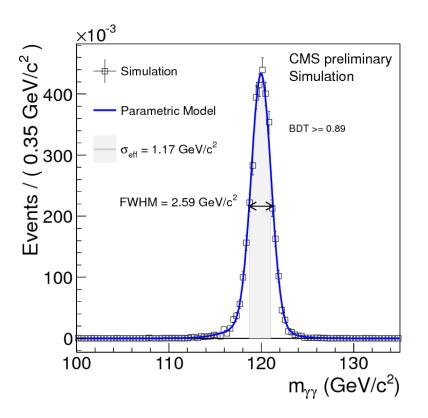

Energy Reconstruction

Number of corrections applied to ECAL cluster energies:

shower containment conversion recovery pile-up mitigation

BDT based regression algorithm used trained on MC

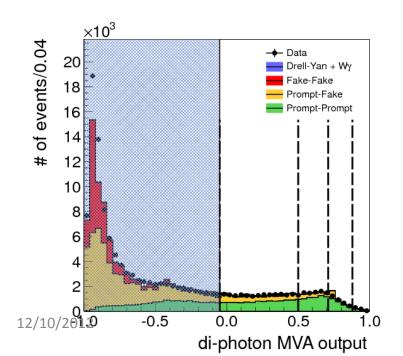
MC tuned to data in $Z \rightarrow ee$ events

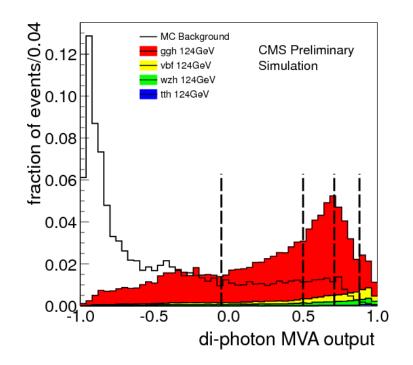

Signal Extraction

3 procedures used:

simple categorisation with mass fit used for earlier results now dropped

BDT categorisation with mass fit "mass factorised"


BDT categorisation with "sideband method"



"Mass factorized" : Categorisation

Train a BDT with photon-ID and kinematic information


Choose carefully to avoid dependence on mass hypothesis

Use BDT output value to define categories – optimised for best expected sensitivity from simulation

"Mass factorized" : Signal Model

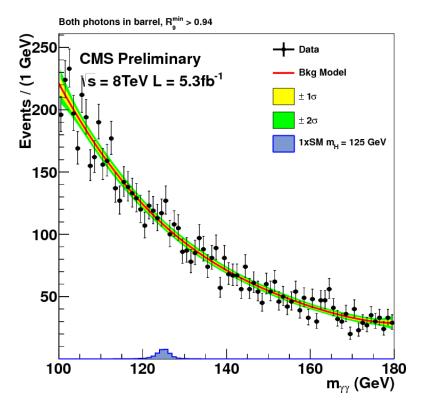
12/10/2012

VBF1

1.87

VBF2

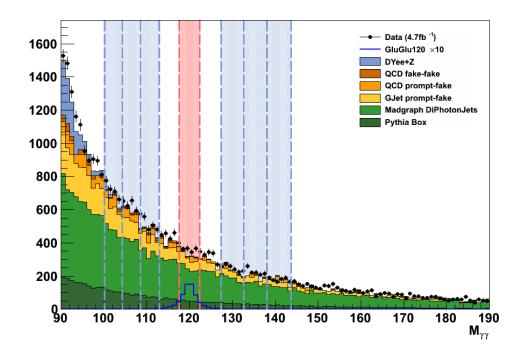
2.13


"Mass factorized" : Background Model

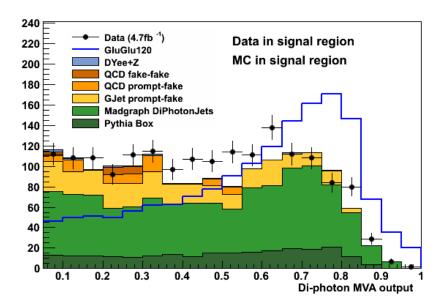
Problem: how to chose a parameterised model?

Solution: compare performance with many classes of functions in simulation

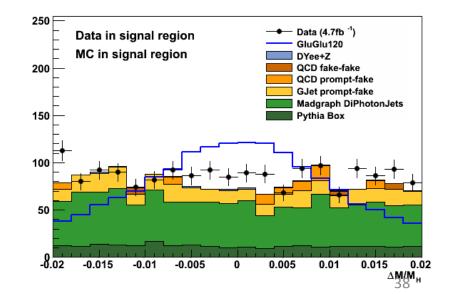
Generate with one function – fit with another


Pick the function with the best performance with respect to biases in the signal extraction 12/10/2012

Separate fit in each category

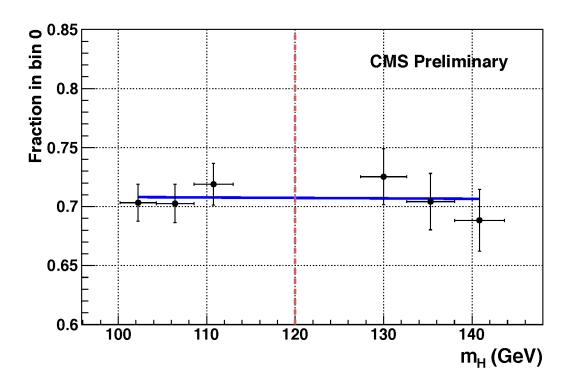

Polynomials give smallest bias, order ranges from 3 to 5 depending on cat.

Alternative approach designed to avoid some pitfalls of pure parametric approach



For each mass hypothesis: Split mass spectrum into windows +/-2% wide

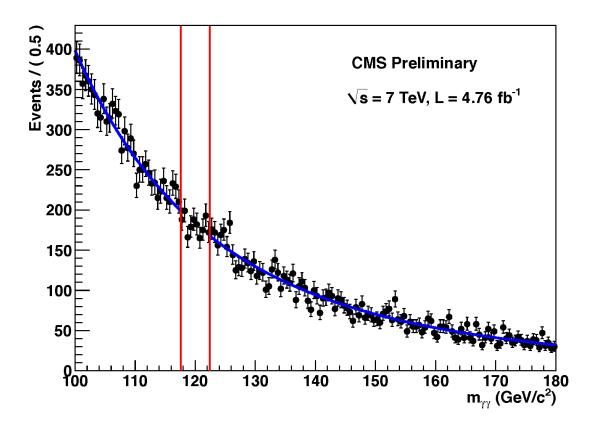
Use data from sidebands to constrain a model of the background in the signal window


Instead of mass fit: combine information from diphoton BDT with $\Delta M/M_H$ in a further BDT

Use output of BDT to categorize events with similar S/B

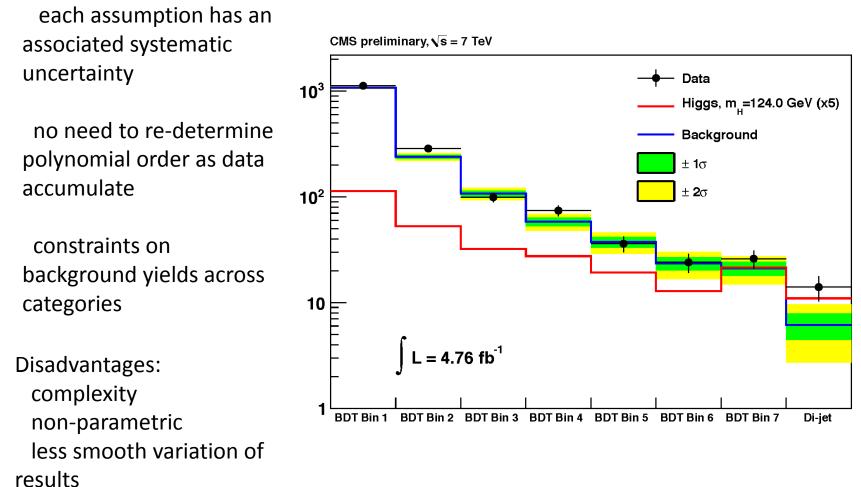
Assume that variation of fractional yield in a category from one sideband to another approximately constant

Follows from approximate independence of diphoton BDT to mass hypothesis



Fit a straight line and parabola to extract relative yield in the signal region

Uncertainties propagated forward from fit and systematic variation from comparing parabola and straight line fit

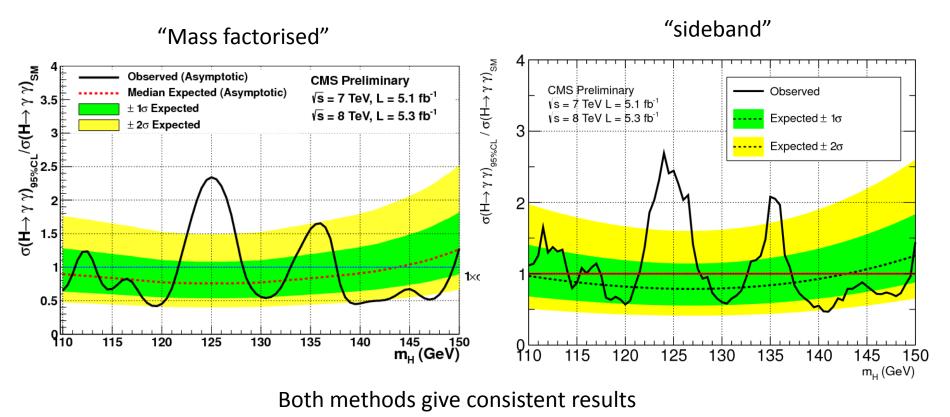

Fit "double-power-law" across sum of all categories to estimate total yield in signal region

In practise can do all fits in one big simultaneous method

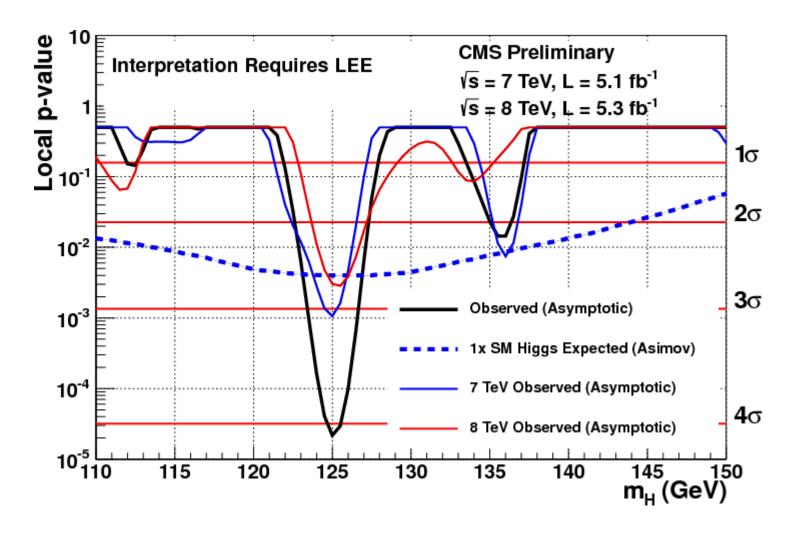
Add uncertainties to yield in each category based on global fit uncertainties and estimate of bias from MC studies similar to those in the "mass factorised" method 12/10/2012

Advantages:

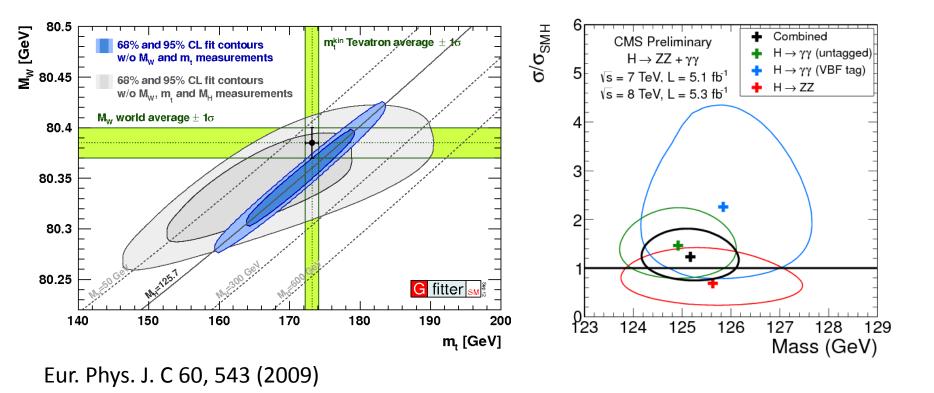
VBF Tagged Categories


2 Categories for 2012, 1 cat categories for 2011 running

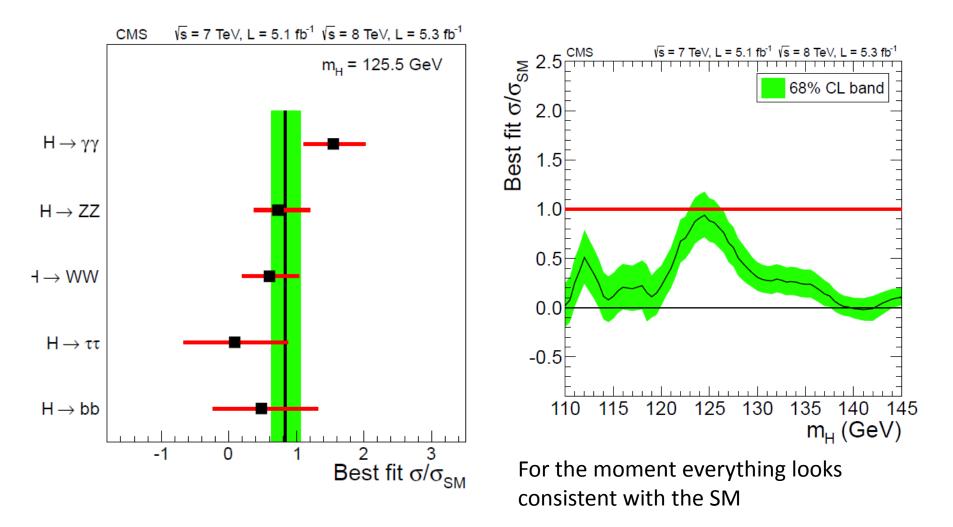
2-jets well separated in rapidity, select for high dijet mass to further enrich VBF content


Large systematics from jet modelling and "category migration" (large on ggH) 12/10/2012

Results


Results of inclusive + VBF searches

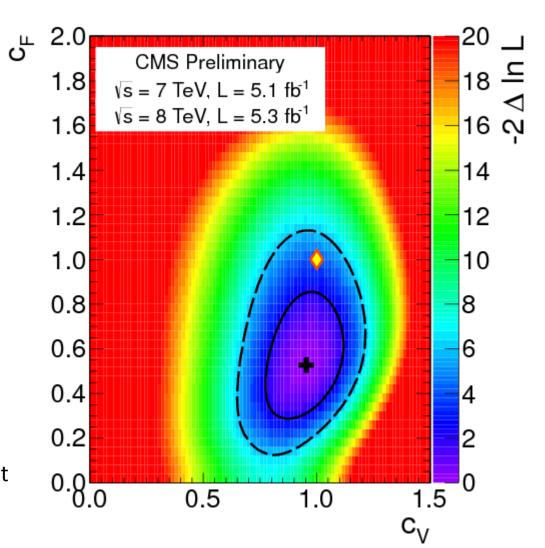
Results



Higgs Properties: Mass

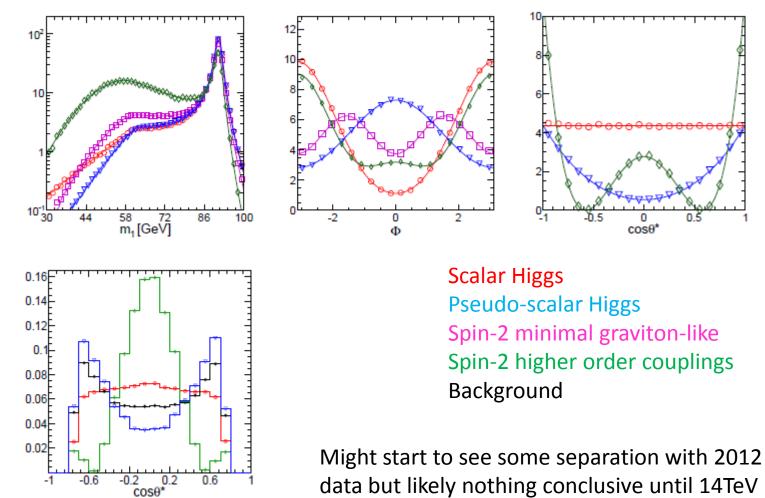
12/10/2012 2D likelihood scan. Approach using 2D Feldman-Cousins also underway 45

Higgs properties: Cross section



Higgs Properties: Couplings

Fit data with simplified models for couplings


Revisit analyses to optimise for parameter extraction rather than discovery

Systematic uncertainties will become increasingly important

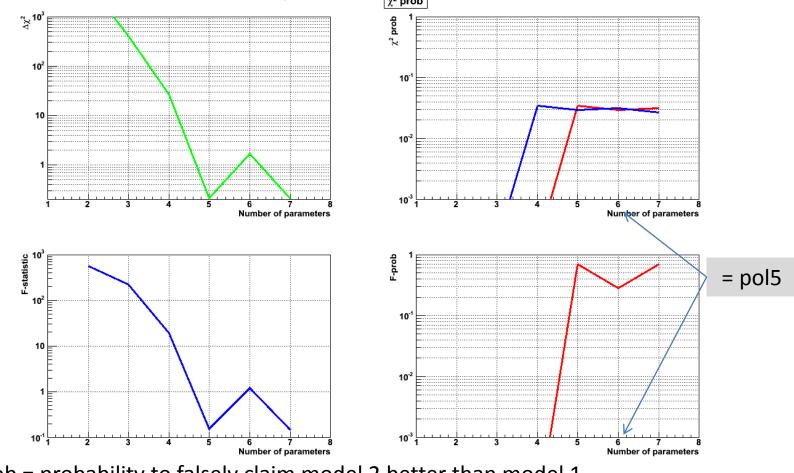
Higgs Properties: Spin and CP

arXiv:1208.4018

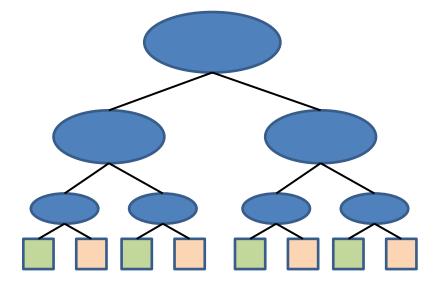
cos0*

Prospects and Summary

After nearly 60 years the easy bit is done!


A good candidate for a Higgs boson has been discovered at ~125 GeV

2012 Data may yet reveal some surprises! But probably not conclusive on SM nature of the boson


Post-shutdown era will hopefully be Higgs Physics instead of Higgs searches!

Polynomials

Toy simulations generating a mass spectrum with different models and then fitting it (NB not the actual stuff used in CMS) $\chi^2 prob$

BDT

