First evidence for CP violation in charm decays at LHCb

Mat Charles (Oxford) on behalf of the LHCb collaboration

Overview

- Introduction to LHCb
- CP violation in charm
- Results of searches at LHCb:
 - 2010: y_{CP} and A_{Γ} in $D^0 \rightarrow K^- K^+$, $D^0 \rightarrow K^- \pi^+$
 - 2011: Time-integrated search for CPV in D⁰ \rightarrow K⁻K⁺ vs $\pi^{-}\pi^{+}$
 - 2010: Search for CPV in $D^+ \rightarrow K^- K^+ \pi^+$ (if time allows)
- Conclusions

Introduction to LHCb

The LHC

Physics goals of LHCb

- Main strategy: indirect searches for NP in b, c decays.
 - Look for evidence of new, heavy particles in loop diagrams
 - Complementary to ATLAS/CMS direct searches
 - ... and a broader physics program too, e.g. forward electroweak
- Why heavy flavour?
 - In short: an excellent source of loop diagrams.
 - CP violation: SM CPV insufficient to explain baryogenesis
 - Rare decays: Tiny & precise SM predictions, enhanced by many NP models
- Why at the LHC?
 - Enormous bb, cc cross-sections -- precision is the name of the game
 - Also: high momentum/boost great for time-dependent measurements

In our acceptance: $\sigma(c\overline{c})=1200\mu b$ and $\sigma(b\overline{b})=75\mu b$. So in 1 fb⁻¹ roughly $10^{12} c\overline{c}$ and $10^{11} b\overline{b}$ produced!

VELO: precision vertexing

42x2 silicon planes, strip pitch 40-100 μm 7mm from beam during data-taking; retracted during injection

Muon stations: muon ID

Five stations, used also in hardware trigger.

Excellent muon/pion separation (single hadron mis-ID rate 0.7% for Phys. Lett. B699 (2011) 330)

Data-taking

LHCb Integrated Luminosity at 3.5 TeV in 2011

- Factor 30 more integrated luminosity in 2011
- Luminosity-leveling working nicely to control pile-up.

CP violation in charm

CP violation

3 types of CP violation: In decay: amplitudes for a process and its conjugate differ In mixing: rate of D⁰ → D⁰ and D⁰ → D⁰ differ In interference between mixing and decay diagrams

- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Perhaps $O(10^{-3})$ for CPV parameters => $O(10^{-5})$ for observables like A_{Γ}
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 - Negligible in Cabibbo-favoured modes (SM tree dominates everything)
 - In generic singly-Cabibbo-suppressed modes: up to $O(10^{-3})$ plausible
- Both can be enhanced by NP, in principle up to O(%)

Bianco, Fabbri, Benson & Bigi, Riv. Nuovo. Cim 26N7 (2003) Grossman, Kagan & Nir, PRD 75, 036008 (2007) Bigi, arXiv:0907.2950

Bobrowski, Lenz, Riedl & Rorhwild, JHEP 03 009 (2010) Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)

CPV in charm not seen previously

Direct

Indirect

Where to look for direct CPV

- Remember: need (at least) two contributing amplitudes with different strong and weak phases to get CPV.
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising
 - Several classes of NP can contribute
 - ... but also non-negligible SM contribution

And difference between $A_{CP}(D^0 \rightarrow K^+ K^-)$, $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$?

- Expectation from U-spin: $A^{dir}(KK) = -A^{dir}(\pi\pi)$ so $A_{CP}(KK) A_{CP}(\pi\pi)$ maximal
- Conclusion could be softened by large U-spin violation in power corrections

Grossman, Kagan & Nir, PRD 75, 036008 (2007) For more on U-spin breaking, see <u>arXiv:1202.3795</u> (Feldmann, Nandi, Soni)

Mixing & indirect CPV with $D^0 \rightarrow K^- K^+, K^- \pi^+$ 38 pb^{-1}

arXiv:1112.4698 (submitted to JHEP) See also: LHCB-CONF-2011-029, LHCB-CONF-2011-046, LHCB-CONF-2011-054

Standard mixing formalism

Mixing occurs for neutral mesons $M^0 = K^0$, D^0 , B^0 , B_s^0

Decompose into mass eigenstates $|\mathsf{M}_{\mathsf{I},2}\rangle$: $|M_{1,2}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$ for $|q|^2 + |p|^2 = 1$ $|M_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t}|M_{1,2}(t=0)\rangle$... and we can invert to get $|\mathsf{M}^0(\mathsf{t})\rangle$ given m_{1,2}, $\Gamma_{\mathsf{I},2}$, q/p...

General time evolution:

$$|M(t)\rangle = \frac{1}{2p} \left[e^{-i(m_1 - \frac{i}{2}\Gamma_1)t} (p|M\rangle + q|\overline{M}\rangle) + e^{-i(m_2 - \frac{i}{2}\Gamma_2)t} (p|M\rangle - q|\overline{M}\rangle) \right]$$

$$|\overline{M}(t)\rangle = \frac{1}{2q} \left[e^{-i(m_1 - \frac{i}{2}\Gamma_1)t} (p|M\rangle + q|\overline{M}\rangle) - e^{-i(m_2 - \frac{i}{2}\Gamma_2)t} (p|M\rangle - q|\overline{M}\rangle) \right]$$

Cartoon of mixing

For convenience, define:

Mixing in charmed mesons

Charm mixing small compared to other mesons in SM:

Contributes mainly to x

Intermediate b: CKM-suppressed Intermediate d,s: GIM-suppressed

$$x \propto rac{(m_s^2-m_d^2)^2}{m_c^2} \sim 10^{-5}$$
 Tiny!

Mixing via hadronic intermediate states (long-range) $\overline{D}^{0} \underbrace{(k^{*}K^{-}}_{\pi^{*}\pi^{-}} \pi^{*}\pi^{-}\pi^{0}}_{\text{etc}} D^{0}$

Non-perturbative; hard to predict SM contribution.

Currently: $|x| \le 0.01$, $|y| \le 0.01 - less tiny!$

e.g. PRD 69,114021 (Falk, Grossman, Ligeti, Nir & Petrov)

Mixing and indirect CPV

- $\bullet\,D^0$ mesons undergo mixing like $K^0,\,B^0,\,B_s{}^0$
- But unlike the others, D⁰ mixing is small.
 Mixing parameters x, y order of 10⁻²
- First seen by BABAR & Belle in 2007
- Now well-established: HFAG average excludes no-mixing hypothesis by 10σ
- Smallness of mixing parameters makes CP asymmetries doubly small, e.g.

 $2A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi$ Mixing parameters O(10⁻²)

Observable asymmetry << 10^{-4} in SM c.f. current world average from HFAG:A_{Γ} = (0.123 ± 0.248)%

Results discussed today

Define
$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

 $\tau(K^+K^-) = 0^0 \rightarrow K^- K^+$: CP-even eigenstate

y_{CP} related to y and CP parameters by:

$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$

 $A_M \neq 0$: CPV in mixing (asymmetry in R_M between D⁰ and D⁰)
 $\cos \phi \neq 1$: CPV in interference between mixing and decay

CP observable A_{Γ} defined as:

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^- K^+)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^- K^+)}$$

 $2A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{y}{\cos \phi} - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{x}{\sin \phi}$

Measuring y_{CP} and A_Γ at LHCb

- Two key challenges at a hadronic machine like LHCb
 - Background from secondary charm (b \rightarrow c decays)
 - Lifetime-biasing trigger and selection
- But on the other hand, two big advantages:
 - Large boost => resolution < lifetime
 - Large production cross-section

Dealing with lifetime bias

- Swimming technique used at CDF (and DELPHI, and NAII)
- Ideally suited to LHCb where our software trigger can be recreated exactly offline.

Trying to measure how acceptance varies with lifetime candidate-bycandidate.

... so that we can pull it directly from the data instead of having to model it on signal MC.

Ideally, would shift D⁰ decay vertex, but this is a nightmare (imagine trying to move VELO hits).

Instead, shift primary vertex in opposite sense (*nearly* the same thing; systematic for difference)

Prompt-secondary discrimination

Prompt charm:

D points to primary vertex Daughters of D don't in general

Secondary charm:

D doesn't point to PV in general

- Use impact parameter χ^2 to distinguish between these.
- 2D fit to (time, IP χ^2). ID projections for tagged D⁰ \rightarrow K⁻ π^+ :

Results for y_{CP} in 2010 data

- Lifetime of $D^0 \rightarrow K^- \pi^+: 410.2 \pm 0.9$ fs (stat err only)
 - Important test of the method. Compare to world-avg: 410.1 ± 1.5 fs
- $y_{CP} = (5.5 \pm 6.3 \pm 4.1) \times 10^{-3}$
- Dominant uncertainties from background.
 - Will be easier to control in 2011 after improvements to trigger
 - Statistical component in secondary charm uncertainty -- again, will improve with 2011 data. Table 1: Summary of systematic uncertainties.

Effect	$y_{CP} (10^{-3})$
VELO length scale	negligible
Turning point bias	± 0.1
Turning point scaling	± 0.1
Combinatorial background	± 0.8
Proper-time resolution	± 0.1
Minimum proper-time cut	± 0.8
Maximum proper-time cut	± 0.2
Secondary charm background	± 3.9
Total	± 4.1

HFAG world avg: $y_{CP} = (1.107 \pm 0.217)\%$

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^{0} \to K^{+}K^{-}) - \hat{\Gamma}(\overline{D}^{0} \to K^{+}K^{-})}{\hat{\Gamma}(D^{0} \to K^{+}K^{-}) + \hat{\Gamma}(\overline{D}^{0} \to K^{+}K^{-})}$$
$$\approx \left(\frac{A_{m}}{2}y\cos\phi - x\sin\phi\right)\frac{1}{1+y_{CP}}$$
$$\approx \frac{A_{m}}{2}y\cos\phi - x\sin\phi.$$

• $A_{\Gamma} = (-5.9 \pm 5.9 \pm 2.1) \times 10^{-3}$

- Systematic uncertainties smaller
 - Better cancellation since both final states use the same D⁰ decay mode.
 - Again, background effects dominate and will improve with more data.

Table 1: Summary of systematic uncertainties.

Effect	$A_{\Gamma} (10^{-3})$
VELO length scale	negligible
Turning point bias	negligible
Turning point scaling	± 0.1
Combinatorial background	± 1.3
Proper time resolution	± 0.1
Minimum proper-time cut	± 0.1
Maximum proper-time cut	± 0.2
Secondary charm background	± 1.6
Total	± 2.1
	•

HFAG world avg: $A_{\Gamma} = (0.123 \pm 0.248)\%$

Does not include recent Belle measurement of $A_{CP}(D^0 \rightarrow K_S \pi^0)$

Time-integrated asymmetries in $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ 0.6 fb⁻¹

arXiv:1112.0938 Accepted for publication in PRL

$D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ measurements

Year	Experiment	CP Asymmetry in the decay mode D0 to π + π -	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2010	CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010).	$+0.0022 \pm 0.0024 \pm 0.0011$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008). +0.0043 ± 0.0052 ± 0.0012	
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
		COMBOS average	$+0.0020 \pm 0.0022$

Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2011	CDF	A. Di Canto (CDF Collab.), Preprint (BEAUTY 2011).	$-0.0024 \pm 0.0022 \pm 0.0010$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$+0.0000 \pm 0.0034 \pm 0.0013$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
1995	CLEO	J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995).	$+0.080 \pm 0.061$
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	$+0.024 \pm 0.084$
		COMBOS average	-0.0023 ± 0.0017

Dominated by CDF, especially for $D^0 \rightarrow \pi^+ \pi^-$

 K^+K^- and $\pi^+\pi^-$ values consistent with zero but have opposite sign.

NB Updates of CDF result: arXiv:1111.5023, CDF-10784

Indirect vs direct CP violation

- Both indirect & direct CPV can contribute.
- Indirect CPV is universal => cancels in A(KK)-A($\pi\pi$)...
 - ... IF equal proper time acceptance for both (e.g. BABAR, Belle)
- If not equal, residual contribution: $A^{ind}[<t_{KK}>-<t_{\pi\pi}>]/\tau_0$

Formalism

- ... so when we take $A_{RAW}(f)^* A_{RAW}(f')^*$ the production and soft pion detection asymmetries will cancel. Moreover...
- No detector asymmetry for D⁰ decays to (K⁺ K⁻), ($\pi^+ \pi^-$)

... i.e. all the D^{*}-related production and detection effects cancel. This is why we measure the CP asymmetry difference: very robust against systematics.

Shorthand: $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$

Assumptions

- Double-difference robust against systematics.
- In order to break the formalism, you need a detector effect that induces different fake asymmetries for KK and $\pi\pi$.
- Two known mechanisms:
 - Correlation between KK/ $\pi\pi$ efficiency ratio and D^{*+}/D^{*-} asymmetry (from production or soft pion efficiency)
 - \bullet e.g. correlated variation of A_P and A_D with kinematics (p_t,η)
 - Solution: divide data into bins of the variable (such that no correlation within bin) and treat each bin independently.
 - Asymmetric peaking background different between KK, $\pi\pi$
 - $\bullet\, Comes$ from mis-reconstructed $D^{*+} \rightarrow D^0\,\pi^+$
 - This is a small effect at LHCb due to excellent hadron ID: from D⁰ mass sidebands, size of peaking background O(1%) of signal... and background asymmetry O(%) so effect O(10⁻⁴)
- First-order expansion assumes raw asymmetry not large.
 - ... which is true: O(%).

Selection

- Kinematic and geometrical selection cuts, including:
 - Track fit quality for all three tracks
 - D^0 and D^{*+} vertex fit quality
 - Transverse momentum of $D^0: p_T > 2 \text{ GeV/c}$
 - Proper lifetime of D^0 : ct > 100 μ m
 - Decay angle of D^0 decay: $\cos\theta_h < 0.9$
 - D⁰ must point back to primary vertex (IP $\chi^2 < 9$)
 - D⁰ daughter tracks must not point back to primary vertex
 - Hard kaon/pion hadron ID cuts imposed with RICH information
 - Fiducial cuts to exclude edges where B-field causes large D*+/D*acceptance asymmetry
- Software trigger required to fire explicitly on the D⁰ candidate.
- D⁰ mass window: 1844 -- 1884 MeV/c² (few slides' time)

Fiducial cuts: cartoon of detector

• B-field breaks symmetry between D^{*+} and D^{*-}

Fiducial cuts

- I regions of kinematic space where one charge of slow pion winds up inside acceptance but other does not.
 - Main example: edges of acceptance (prev. slide)
 - Also downstream beampipe
- Result: large local raw asymmetries.
- These are independent of the D⁰ decay mode but:
 - break the assumption that raw asymmetries are small
 - risk of second-order effects if bin includes border region where raw asymmetry is changing rapidly and ratio of efficiencies of $(D^0 \rightarrow K^-K^+)$ vs $(D^0 \rightarrow \pi^-\pi^+)$ is also varying
- Therefore exclude them.

Fiducial cuts: edge region

Raw asymmetry of $D^{*\pm} \rightarrow D^0(K^-K^+) \pi^+$ in the (p_x, |p|) plane of the tagging slow pion:

- Solid line: fiducial cuts applied
- Dotted line: looser cuts used for crosscheck.

Fiducial cuts: downstream beampipe

Plot slot pion p_y vs p_x (D^{*+} only):

- Upstream acceptance is charge-independent
- Downstream acceptance has left-right asymmetry

Fiducial cuts: downstream beampipe

Raw asymmetry plots again, this time requiring $|p_y/p_z| < 0.02$:

- Very clear effect.
- Impose cuts to remove this region too:
 - Only applied for $|p_y/p_z| < 0.02$

Mass spectra

For illustration; not used in calculating ΔA_{CP}

34

Kinematic binning

- Recap: kinematic binning needed to suppress second-order effects of correlated asymmetries.
- Divide data into kinematic bins of (p_T of D^{*+}, η of D^{*+}, ρ of soft pion, left/right hemisphere) -- 54 bins
- Along similar lines:
 - split by magnet polarity (field pointing up, pointing down)
 - split into two run groups (before & after technical stop)
- Fit final states $D^0 \rightarrow K^+ K^-$ and $\pi^+ \pi^-$ separately => 432 independent fits.

Fit procedure

- Use ID fits to mass difference $\delta m = m(D^0 \pi^+) m(D^0) m(\pi^+)$
- Signal model: double-Gaussian convolved with asymmetric tail: $g(\delta m) = [\Theta(\delta m' - \mu) A(\delta m' - \mu)^{s}] \otimes G_{2}(\delta m - \delta m'; f_{core}, \sigma_{core}, \sigma_{tail})$ Phys. Lett. B 633 (2006) 309; LHCb-PUB-2009-031
- D^{*+} and D^{*-} are allowed to have different mass and resolution.
 - \bullet ... though f_{core} and $(\sigma_{\text{core}}/\sigma_{\text{tail}})$ are shared
- Background model:

$$h(\delta m) = B\left[1 - \exp\left(-\frac{\delta m - \delta m_0}{c}\right)\right]$$

 δm_0 fixed from fit to high-statistics $D^0 \rightarrow K^- \pi^+$ channel Special handling of tricky cases (single Gaussian for lowstatistics bins, background parameters loosened in some kinematic regions).

Consistency for ΔA_{CP} among individual fits: $\chi^2/NDF=211/215$ (56%) Stat error: 0.21% absolute

Systematic uncertainties

- Kinematic binning: 0.02%
 - Evaluated as change in ΔA_{CP} between full 54-bin kinematic binning and "global" analysis with just one giant bin.
- Fit procedure: 0.08%
 - Evaluated as change in ΔA_{CP} between baseline and not using any fitting at all (just sideband subtraction in δm for KK and $\pi \pi$ modes)
- Peaking background: 0.04%
 - Evaluated with toy studies injecting peaking background with a level and asymmetry set according to D⁰ mass sidebands (removing signal tails).
- Multiple candidates: 0.06%
 - Evaluated as mean change in ΔA_{CP} when removing multiple candidates, keeping only one per event chosen at random.
- Fiducial cuts: 0.01%
 - \bullet Evaluated as change in ΔA_{CP} when cuts are significantly loosened.
- Sum in quadrature: 0.11%

$\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.})]\%$

Significance: 3.5 σ

Further crosschecks

- Numerous crosschecks carried out, including:
 - Electron and muon vetoes on the soft pion and on the D^0 daughters
 - Different kinematic binnings
 - Stability of result vs time
 - Toy MC studies of fit procedure, statistical errors
 - Tightening of PID cuts on D⁰ daughters
 - Stability with kinematic variables
 - Variation with event track multiplicity
 - Use of other signal, background lineshapes in the fit
 - Use of alternative offline processing (skimming/stripping)
 - Internal consistency between subsamples of data
- All variation within appropriate statistical/systematic uncertainties.

Stability vs time

Stability with kinematic variables

 No evidence of dependence on relevant kinematic variables.

Consistency among subsamples

Subsample	ΔA_{CP}	χ^2/ndf
Pre-TS, field up, left	$(-1.22 \pm 0.59)\%$	13/26(98%)
Pre-TS, field up, right	$(-1.43 \pm 0.59)\%$	27/26(39%)
Pre-TS, field down, left	$(-0.59\pm0.52)\%$	19/26(84%)
Pre-TS, field down, right	$(-0.51 \pm 0.52)\%$	29/26(30%)
Post-TS, field up, left	$(-0.79 \pm 0.90)\%$	26/26(44%)
Post-TS, field up, right	$(+0.42 \pm 0.93)\%$	21/26(77%)
Post-TS, field down, left	$(-0.24 \pm 0.56)\%$	34/26(15%)
Post-TS, field down, right	$(-1.59 \pm 0.57)\%$	35/26(12%)
All data	$(-0.82 \pm 0.21)\%$	211/215(56%)

• Split by:

- Before/after technical stop (about 60% of data before)
- Magnetic field polarity
- Charge of slow pion

• Consistency among subsamples: X²/NDF = 6.7/7 (45%)

Interpretation: lifetime acceptance

- Lifetime acceptance differs between D⁰ \rightarrow K⁺K⁻, $\pi^+ \pi^-$
 - e.g. smaller opening angle => short-lived D⁰ \rightarrow K⁺K⁻ more likely to fail cut requiring daughters not to point to PV than $\pi^+\pi^-$
- Need this to compute how much indirect CPV could contribute.
- Fit to background-subtracted samples passing the full selection, correcting for ~ 3% secondary charm, and extract:

$$\frac{\Delta \langle t \rangle}{\tau} = \frac{\langle t_{KK} \rangle - \langle t_{\pi\pi} \rangle}{\tau} = [9.83 \pm 0.22 (\text{stat.}) \pm 0.19 (\text{syst.})] \%$$

Systematics: secondary charm fraction (0.18%), world average D⁰ lifetime (0.04%), background-subtraction procedure (0.04%)

• ... so indirect CP violation contribution mostly cancels.

LHCb value ($-0.82 \pm 0.21 \pm 0.11$)% consistent with HFAG average of non-LHCb results given our time-acceptance (approx 1.2σ)

World avg including LHCb result

New result from CDF at La Thuile $\Delta A_{CP} = [-0.62 \pm 0.21 (\text{stat.}) \pm 0.10 (\text{syst.})]\%$ CDF note 10784

- Result on 9.7/fb of data
- ΔA_{CP}^{dir} [%] • Fully consistent with LHCb result (less than $I\sigma$ apart)
- CDF result 2.7 σ away from no-CPV hypothesis.
- CDF fit to all experimental results:

 $A_{CP}^{\rm dir} = (-0.67 \pm 0.16)\%$ $A_{CP}^{\text{ind}} = (-0.02 \pm 0.22) \%$

 $(3.8\sigma \text{ from no CPV})$

What next?

- Lots of work needed on both experimental & theoretical sides.
- This measurement: 0.6/fb.
 - Already ~ 1/fb on tape -- will extend to this.
 - Expect another O(1/fb) in 2012 before long shutdown
 - ... with improved charm trigger efficiency
- Independent measurements with other tagging methods (esp. semileptonic B decays)
- Look for direct CPV in other SCS charm decays, esp. 3-body modes
- Further measurements of indirect CPV

Summary

- Results of searches for CPV in charm presented:
 - Time-dependent, indirect CPV in $D^0 \rightarrow K^-K^+$ (2010 data)
 - Difference in time-integrated CP asym. in $D^0 \rightarrow K^-K^+$, $\pi^-\pi^+$ (2011 data)
- New result: $\Delta A_{CP} = -0.82 \pm 0.21$ (stat) ± 0.11 (sys) %
- Significance 3.5σ (incl. statistical and systematic uncertainties)
- Indirect CP violation suppressed in the difference $(\Delta < t > /\tau = 9.8 \pm 0.3\%)$ so sensitive mainly to direct CPV.
- Consistent with previous data (HFAG average) and with new CDF result.
- Magnitude of central value larger than prior SM expectation
 - ... but charm is notoriously difficult to pin down theoretically
 - ... and updated world avg can be accommodated within SM
 - $\bullet\,...\,and$ this is still only 3.5σ
- Another ~0.4 fb⁻¹ on tape and more to come.

Isidori, Kamenik, Ligeti, Perez (<u>arXiv:1111.4987</u>); Brod, Kagan, Zupan (<u>arXiv:1111.5000</u>)

First evidence of CP violation in charm.

$D^+ \rightarrow K^- K^+ \pi^+$

38 pb⁻¹

Mass spectra after selection

The Dalitz plot

• First, here is the D⁺ \rightarrow K⁻K⁺ π^+ Dalitz plot with LHCb data:

Technique

- Model-independent search for CPV in Dalitz plot distribution
- Compare binned, normalized Dalitz plots for D⁺, D⁻
 - Production asymmetry etc cancels completely after normalization.
 - Efficiency asymmetries that are flat across Dalitz plot also cancel.
- Method based on "Miranda" approach -- asymmetry significance
 - In absence of asymmetry, values distributed as Gaussian(μ =0, σ =1)
 - Figure of merit for statistical test: sum of squares of Mirandas is a χ^2 .

$D_s^+ \rightarrow K^- K^+ \pi^+ \text{ control mode}$

- For MagUp: χ^2 /NDF = 16.0 / 24 (88.9%) Preliminary: 2010 data, 38 pb⁻¹
- For MagDown: $\chi^2/NDF = 31.0 / 24 (15.5\%)$
- $\frac{1}{2} + \frac{1}{2} + \frac{$
- Combined*: χ^2 /NDF = 26.2 / 24 (34.4%)
- Great! No evidence of any fake asymmetry in control mode.

*To combine: take weighted average of measured asymmetry in each bin, then its evaluate significance. Also tried simple merge of events; gives almost identical result.

Other $K^-K^+\pi^+$ control modes

$K^-\pi^+\pi^+$ control modes

- $D^+ \rightarrow K^- \pi^+ \pi^+$ behaves amazingly well. Remember:
 - there is a mechanism for a fake asymmetry that doesn't apply to the signal mode (kaon efficiency)
 - the statistics are 10x larger than in the signal mode

Method of comparing normalized Dalitz plots very robust against systematic effects.

Results for $D^+ \rightarrow K^- K^+ \pi^+$

Binning	Fitted mean	Fitted width	χ^2/ndf	p-value (%)
Adaptive I	0.01 ± 0.23	1.13 ± 0.16	32.0/24	12.7
Adaptive II	-0.024 ± 0.010	1.078 ± 0.074	123.4/105	10.6
Uniform I	-0.043 ± 0.073	0.929 ± 0.051	191.3/198	82.1
Uniform II	-0.039 ± 0.045	1.011 ± 0.034	519.5/529	60.5

No evidence for CP violation in the 2010 dataset of 38 pb⁻¹

Summary

- Results of searches for CPV in charm presented:
 - Time-dependent, indirect CPV in $D^0 \rightarrow K^-K^+$ (2010 data)
 - Difference in time-integrated CP asym. in $D^0 \rightarrow K^-K^+$, $\pi^-\pi^+$ (2011 data)
- New result: $\Delta A_{CP} = -0.82 \pm 0.21$ (stat) ± 0.11 (sys) %
- Significance 3.5σ (incl. statistical and systematic uncertainties)
- Indirect CP violation suppressed in the difference $(\Delta < t > /\tau = 9.8 \pm 0.3\%)$ so sensitive mainly to direct CPV.
- Consistent with previous data (HFAG average) and with new CDF result.
- Magnitude of central value larger than prior SM expectation
 - ... but charm is notoriously difficult to pin down theoretically
 - ... and updated world avg can be accommodated within SM
 - $\bullet\,...\,and$ this is still only 3.5σ
- Another ~0.4 fb⁻¹ on tape and more to come.

Isidori, Kamenik, Ligeti, Perez (<u>arXiv:1111.4987</u>); Brod, Kagan, Zupan (<u>arXiv:1111.5000</u>)

First evidence of CP violation in charm.

Summary

- Results of searches for CPV in charm presented:
 - Time-integrated, direct CPV in D⁺ \rightarrow K⁻ K⁺ π^+ (2010 data)
 - Time-dependent, indirect CPV in $D^0 \rightarrow K^-K^+$ (2010 data)
 - Difference in time-integrated CP asym. in $D^0 \rightarrow K^- K^+$, $\pi^- \pi^+$ (2011 data)
- New result: $\Delta A_{CP} = -0.82 \pm 0.21$ (stat) ± 0.11 (sys) %
- Significance 3.5σ (incl. statistical and systematic uncertainties)
- Indirect CP violation suppressed in the difference $(\Delta < t > /\tau = 9.8 \pm 0.9\%)$ so sensitive mainly to direct CPV.
- Consistent with previous data (HFAG average) and with new CDF result.
- Magnitude of central value larger than current SM expectation
 - ... but charm is notoriously difficult to pin down theoretically
 - ... and updated world avg can be accommodated within SM
 - ... and this is still only 3.5 σ (but another 500 pb⁻¹ on tape)

Isidori, Kamenik, Ligeti, Perez (<u>arXiv:1111.4987</u>); Brod, Kagan, Zupan (<u>arXiv:1111.5000</u>)

First evidence of CP violation in charm.

Integrated luminosity

LHCb Integrated Luminosity at 3.5 TeV in 2011

Showing online luminosity (not final calibration) 59

Can the SM stretch?

Figure 1: Comparison of the experimental Δa_{CP} values with the SM reach as a function of $|\Delta R^{SM}|$.

• Well above naive expectation... but not excluded from first principles.

arXiv:1111.4987v1 (Isidori, Kamenik, Ligeti, Perez)

Time-integrated wrong-sign $D^0 \rightarrow K\pi$

Three contributions with different lifetime dependence:

$$\Gamma_{WS}(t) = e^{-\Gamma t} \left(\underbrace{R_D + y' \sqrt{R_D}(\Gamma t)}_{\text{DCS} \text{ Interference}} + \underbrace{\frac{x'^2 + y'^2}{4}}_{\text{Mixing}} (\Gamma t)^2 \right)$$

Our lifetime acceptance is not flat => affects relative weighting.

- Start with raw WS/RS time-integrated ratio.
- Determine our efficiency(t) using PDG D0 lifetime as input
- Determine correction using HFAG mixing parameters as input
- Compute lifetime-acceptance-corrected WS/RS ratio.

	WS/RS of $D \to K\pi$ decays (%)
$R_{measured}$	$0.442 \pm 0.033 \; (stat.) \; \pm 0.042 \; (sys.)$
R_{acccor}	$0.409 \pm 0.031 \ (stat.) \ \pm 0.039 (sys.) \ ^{+0.028}_{-0.020} \ (sys. \ mixing)$
R(PDG)	0.380 ± 0.018

Cross-check consistent with PDG average.

