Fitting (2012 – 2013 Academic Year: Tutorial Questions)

Exercises

- 8.1 When might it be useful to perform a fit to data?
- 8.2 Explain the term "number of degrees of freedom" and how this relates to the number of data N in a data set.
- 8.3 Given the measurements $x_1 = 1.2 \pm 0.3$, and $x_2 = 1.8 \pm 0.3$, approximate the mean value and uncertainty on the average value of x obtained by performing a χ^2 scan from 1.0 to 2.0 in steps of 0.1. Compare the results you've obtained with those from a weighted average (see tutorial on errors, question 8).
- 8.4 Assuming that $y = ax^2 + b$, use the method of least squares to derive the values of a and b. Assume that the uncertainties on each of the data points is the same.
- 8.5 Use the method of least squares, assuming the relationship y = ax + b, to determine the values and errors associated with a and b given the data below, assuming that the uncertainty $\sigma_y = 0.1$.

х	1.1	1.5	2.0	3.1	4.2	5.0
у	2.0	2.9	4.2	6.0	8.0	10.0

- 8.6 By performing a χ^2 scan, estimate the average value of the following measurements of the quantity $S: 0.655 \pm 0.024, 0.59 \pm 0.08, 0.789 \pm 0.071$. Hint: You might like to assume a bin spacing of 0.01 and consider the range S = 0.6 to S = 0.7.
- 8.7 Given two measurements of some observable x,

$$x_1 = 1.3 \pm 0.1,\tag{8.0.1}$$

$$x_2 = 1.1 \pm 0.2, \tag{8.0.2}$$

estimate the best fit for the average value of x_1 and x_2 by performing a χ^2 scan in steps of 0.05 from x = 1.1 to x = 1.4, and estimate the the error on the average value. Note the χ^2 , and the corresponding $P(\chi^2, \nu)$ for your result, and comment if this is reasonable.

- 8.8 If a $-\ln \Delta \mathcal{L}$ curve is given by $1.1(x 1.3)^2$, what is the central value and uncertainty on the best fit result obtained?
- 8.9 If a $-\ln \Delta \mathcal{L}$ curve is given by $0.5(x+2)^2$, what is the central value and uncertainty on the best fit result obtained?
- 8.10 If a $-\ln \Delta \mathcal{L}$ curve is given by $(x-1)^2$, what is the central value and uncertainty on the best fit result obtained?

8

8.11 Hooke's law is given by F = -kx, where F is force in Newtons, and x is the elastic extension in cm. Given the following data for a spring under load, determine the best fit value for the constant of proportionality k, assuming the uncertainty on x_i is constant.

F	1.0	2.0	3.0	4.0	5.0
х	0.4	1.1	1.5	2.1	2.5

8.12 Ohm's law is given by V = IR. Given that current is measured by a precise device, and that $\sigma_V(I)$ is a constant, determine the general expression for calculating R for a data sample using a least squares approach.

 $\mathbf{2}$