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Overview

» Bayes theorem is given by

The probability you
want to compute: The
probability of the

hypothesis B given the
data A. This is

sometimes called the
posterior probability

Adrian Bevan: QMUL



OVGFVleW The probability of the

data A, given the
hypothesis B. This you
can compute given a
theory or model

» Bayes theorem is given by

/

P(A|B)
P(A)

P(B|A) = P(B)

The probability you
want to compute: The
probability of the
hypothesis B given the
data A. This is
sometimes called the
posterior probability
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The prior probability: a
level of belief in the
feasibility of a hypothesis.
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Overview

» Bayes theorem is given by

The probability of the
data A, given the
hypothesis B. This you
can compute given a

theory or model

/

P(A|B)

P(B|A) = PA P(B)—__

The probability you
want to compute: The
probability of the

hypothesis B given the
data A. This is

sometimes called the
posterior probability

The probability of the
data A given all
possible hypotheses.

The prior probability: a
level of belief in the
feasibility of a hypothesis.

P(A) =Y P(AIB))P(B;)
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Example

R

» What is the probability of being dealt an ace from a deck of

52 cards?

Two hypothetical outcomes: you are dealt an ace (B,), and you are

not dealt an ace (B,).

Assume that the deck is unbiased and properly shuffled, so that there
are 4 aces out of 52 randomly distributed in the pack of cards.

P(Bog) = 4/52
P(B;) = 48/52

Is this choice of prior
reasonable?

Compute the probability of being dealt an ace, given that you have an

unbiased P(A‘B()) _ 4/52
P(A|B;) = 48/52

Now we can compute the posterior probability
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P(A) =) P(A|B;)P(B))

= (4/52) ><j(4/52) + (48/52) x (48/52)

— (16 + 2304) /2704
— 0.8580(45s.f.)

P(A|B)

P(B|A) = PA

P(B)

(4/52) x (4/52)

P(A]Bo) = 0.8580
= 0.007(4s.f.)
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This result does not agree
with a frequentist
interpretation of the data.




wQf

An alternative calculation: assume uniform priors

’ P(4) = Y P(AIB)P(B))
P(A) = (4/52) % (1/2) + (48/52) x (1/2)
— (4 +48)/104
= 0.0
_ P(A|B)
P(B|A) =~ P(B)
pAlBy — (/52 x(1/2)
0.5 This result agrees with a
— 0.077(3 d.p,) frequentist interpretation
of the data.
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Formula for two uncorrelated variables

| 2 2
_ ;171/(71 —}-;172/(72 ) 9 2
T 1 — +(1/0 1/o0
1/2
ag;zfl + a%.l’g a%a% /
2 2 == 2 2 .
o1 + 05 o] + 05

~1/2

» For example, lets just consider the total precision on the
measurement of some observable X. If there are two ways
to measure X, and these yield 6, = 5 and 0, =3, then the

total error on the average is
<a§xag>1/2 (25><9>1/2
0% + 03 20 +9
= 6.62 ~ 2.57
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» If one has a set of uncorrelated observables, then it is
straightforward to compute the average in the same way
foreach observable in the set.

» lL.e.instead of an n dimensional problem, you have n lots of a
one dimensional problem as in the previous example.

» Unfortunately if you have a set of correlated observables
from different measurements, then this is no longer the
case and the problem becomes a little more complicated.
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» A more complicated problem arises when the observables are
correlated... In this case the covariance matrix between a set of
M measured observables will play a role.

inverse of the covariance matrix
for the j" measurement

- -
— - /‘7_1
T = E V,
j=1
[ M
Vo = E Vit The j™ measurement vector (the n
j=1 correlated observables)

» The first factor is common both to the covariance matrix for the
average, and the observable values for the average.
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Example: Measuring time-dependent CP W)
asymmetries in B meson decays

» Real example using results from two HEP experiments

Experiment S C psc  COVge

BABAR (Aubert et al., 2007) —0.170+0.207 +0.0104+0.162 0.035 -0.0012
Belle (Somov et al., 2007) +40.190+£0.310 —0.160+0.225 0.100 0.0070

M
n

2
2
Remember if you only have a correlation, you

need to compute the covariance in order to
compute V.
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Example: Measuring time-dependent CP W)
asymmetries in B meson decays

» Real example using results from two HEP experiments

Experiment S C psc  COVgeo

BABAR (Aubert et al., 2007) —0.170+0.207 +0.010+0.162 0.035 -0.0012
Belle (Somov et al., 2007) 70.190 + 0.310/0.160 +0.225 0.100 0.0070

/

o _ ( —0.170 v (00430 —0.0012
17\ +0.010 " 1=\ —0.0012 0.0261 /)’
o 019 Ve — ((0:0964 0.0070

27\ —0.16 )’ 27\ 0.0070 0.0505 /’
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Example: Measuring time-dependent CP W)
asymmetries in B meson decays

» Real example using results from two HEP experiments

Experiment S C COVgo

BABAR (Aubert et al., 2007) —0.170 +0.207 +0.010 +0.162 0. 0
Belle (Somov et al, 2007)  +0.190 + 0.378, —0.160 0. 2\25 0. 10

2

;
o _ ( —0.170 vo_ (00430 ,40.0012
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Example: Measuring time-dependent CP W)
asymmetries in B meson decays

» Real example using results from two HEP experiments

Experiment S C psc  COVge

BABAR (Aubert et al., 2007) —0.170+0.207 +0.0104+0.162 0.035 -0.0012
Belle (Somov et al., 2007) +0.190£0.310 —0.160 + 0.1225 0.100 /0.9070

0;
. _ ( —0170 v 0.043
1=\ +0.010 /)’ L —0.001 )
L +0.19 v _ [ 0-0964
27\ —0.16 )’ 27\ 0.0070 0.0505 /’

» Having constructed X and V]-, one can compute the
average ...
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- -1

» Starting with the error matrix: By
_ ~1
V=12V,
| J=1 |
» Where
1 -1 [ 33749 —0.402
itV = ( —0.402  58.363 )’
» So
Results:
V = Covariance = 0.0002

0.0296 0.0002
0.0002 0.0171

).

Variances are read off of the diagonal
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WQf

» Similarly for the average value we can now compute S and C
(the n observables of interest in our example) via:

» Thus the average of the two measurements is:
S\ [ —0.05x0.17
c /) \ —0.06+0.13

» with a covariance of 0.0002 between S and C.
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Poisson limits
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» For a given number of observed events resulting from the
study of a rare process one wants to compute a limit on the
true value of some underlying theory parameters (e.g. the
mean occurrence of the rare process).

» This is a Poisson problem, where:

AT€—A
f(r,A) = 1
r.
A = mean/variance of the underlying distribution
r = observed number of events
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» For a given observation, we can compute a likelihood as a
function of A, e.g.

LA Ir)

11—
0.8
0.61 I=5
=4
04 r=3
=2
0.2 r=1
1=
% " ; 8 10 12
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From each likelihood
distribution one can construct
a one or two sided interval by
integrating L( A ,r) to obtain
the desired coverage.



WQf

» For a given observation, we can compute a likelihood as a

LA Ir)

function of A, e.g.

08

0.6

04

e.g. for r=>5, the interval shown
contains 68% of the total
integral of the likelihood.

=5
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10 12 14

From each likelihood
distribution one can construct
a one or two sided interval by
integrating L( A ,r) to obtain
the desired coverage.

We can build a 2D region
from a family of likelihood
curves for different values of
r.



10

eg r =5 is indicated
by the vertical (red)
dashed line

Confidence interval for A
~J
A
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Physically there are discrete observed numbers of events for a background free process. If
however background plays a role, then the problem becomes more complicated, and non-
integer values may be of relevance..
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Multi-dimensional constraint

An example of constraining a model using data.
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Motivation

» The Standard Model of particle physics describes all
phenomenon we know at a sub-atomic level.

» The model is incomplete:
Universal matter-antimatter asymmetry unknown
Nature of neutrinos unknown
What is Dark Matter
What is Dark Energy [related to a higher order GUT]
etc.

» Many particle physicists want to test the Standard Model
precisely for two (related) reasons:
(i) understand the model better
(ii) see where it breaks...
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The problem

» The decay BT — 771 has been measured, and can be
compared with theoretical expectations.

» Measurement:
B(B* — rFv) = (1.15+£0.23) x 1074
» Standard Model expectation:
B(BE — 15v) gy = (1.01 £ 0.29) x 104

b N
For a simple extension of the Standard
(H", W™ Model, called the type Il 2 Higgs Doublet
————————————— Model we know that r,, depends on the
mass of a charged Higgs and another
f 2 y parameter, /3. , ,
m
r, = —x il T‘H:<1— —Z tan” ﬁ)
B, ma;
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+
What can we learn about my, and tan for this WO

model?

» We can compute r; from our knowledge of the measured
and predicted branching fractions:

rg = 1.14 £ 0.40

» How can we use this to constrain my and tanf3?

m7 ?
TH = ( — —2 tan25>

Ly,
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Method 1: x? approach

» Construct a x? in terms of ry
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Method 1: x? approach

» Construct a x? in terms of ry

From SM theory
and experimental
measurement

X° =

g — ?H(mH,tanﬁ)

Or g

|

From SM theory
and experimental
measurement
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Method 1: x? approach

» Construct a x? in terms of ry

From SM theory
and experimental
measurement

X° =

WQf

Calculate using

THZ( T2,
My

One has to select the parameter values.

2
mpg

2
tan? ﬁ)

g — ?H(mH,tanﬁ)

Or g

|

From SM theory
and experimental
measurement
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Method 1: x? approach

» For a given value of m;; and tanf8 you can compute 2.

b e.g. myg = 0.2TeV
tang = 10
rg(myg,tan) = 0.93
,  (1.14-093\°
T 0.4
= 0.28

» So the task at hand is to scan through values of the
parameters in order to study the behaviour of constraint on
Iy
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Method 1: x? approach

chi2(mH vs tanBeta) Emrieschiz 5550
FO r Mean x 0.01

Mean y 90
............................................................................................................... RMS x 0.0002544
. RMS y 9.036

NqgET
1012
10"°

108
10° 3
10* S
102 5

1027,
10-4 : LA I |

Allowed region
(the valley)
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A large x 2 indicates a region of
parameter space that is forbidden.

A small value is allowed.

In between we have to decide on a
confidence level that we use as a
cut-off.

We really want to covert this
distribution to a probability: so use
the X 2 probability distribution.

There are 2 parameters and one
constraint (the data), so there are
2—1 degrees of freedom, i.e.

v=I



Method 1: x? approach

| prob(mH vs tanBeta) |

ability

Allowed region
(P~1)

Forbidden
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A P ~ | means that we have no
constraint on the value of the
parameters (i.e. they are allowed).

A small value of P, ~0 means that
there is a very low (or zero)
probability of the parameters being
able to take those values (i.e. the
parameters are forbidden in that
region).

Typically one sets a |—CL
corresponding to | or 3 O to talk
about the uncertainty of a
measurement, or indicate an
exclusion region at that CL.



Method 1: x? approach

| prob(mH vs tanBeta) |

ability

Artefact: a remnant of binning the data. For these
plots there are 100 x 100 bins. As a result visual
oddities can occur in regions where the

probability (or X 2) changes rapidly.
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A P ~ | means that we have no
constraint on the value of the
parameters (i.e. they are allowed).

A small value of P, ~0 means that
there is a very low (or zero)
probability of the parameters being
able to take those values (i.e. the
parameters are forbidden in that
region).

Typically one sets a |—CL
corresponding to | or 3 O to talk
about the uncertainty of a
measurement, or indicate an
exclusion region at that CL.
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Method 1: x? approach

» A finer binning can be used to compute a 1-CL distribution.

Here 1, 2 and 3o intervals are shown.
Allowed: a tiny slice of parameter space is allowed

/ between two regions that are forbidden

prob(mH vs tanBeta)
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Summary: x? approach

» This is nothing new - it is just a two-dimensional scan solution to
a problem.

» Itis however more computationally challenging to undertake
(excel probably won't be a good fit to solving the problem):

1D problem: N scan points
2D problem: N? scan points

As N becomes large (e.g. 100 or 1000) the number of sample points
becomes very large.

i.e. the curse of dimensionality strikes.

An MD problem has NM sample points.

e.g. Minimal Super-Symmetric Model (MSSM) has ~160 parameters,
so one has a problem with N160 sample points. This is currently not a
viable computational method to explore the complexities of MSSM.
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