REVISION

Kinetics (kinematics)

Motion of bodies without considering forces

Consider an object moving in space in a generalised 3D path
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Its instantaneous velocity, v, is simply the rate of change ofr,
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B(t) = vl + v, + vk
so it can be written in terms of its own components

We can define the acceleration a at time t as
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or simply in terms of its own components

a(t) = a,i+ay,j+ a,k

where,
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Running the maths backwards now...

Where
v; = initial velocity

Uy = final velocity
t; = initial velocity
tr = final velocity

Of course we can also do this for velocity
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Where,
r; = initial position

T = final position

Usually t;=0 and we also have boundary (initial) conditions to
define the constants of integration.

Since we can write everything in terms of independent
(orthogonal) components,

r(t) = x(O1 + y(£)] + z()E,
B(t) = vl + v, + vk,
etc.,
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Remember that average velocity over interval At,

Average tf — t; dt

Consider the special case of constant acceleration, i.e. not
a(t) but simply a
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Let vi=v and v=u,
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We also have over interval t,
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Use t = —=and substitute into the above,
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this is true only for constant a.



