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QMA Mid-term Test 13:00 on Tuesday the 1st of March 2011 
 
 
Write your answers in the space provided.   NAME: 
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Q1. 
a) Write down the one-dimensional, time-dependent Schrödinger equation for a 
particle in a potential V(x,t) .  
 
 
 
 
b) Which condition allows us to derive the time-independent Schrödinger equation?  
 
 
 
c) Write down the time-independent Schrödinger equation.  
 
 
 
 
d) Write down a resulting general form for ( )tx,Ψ in the time independent case. 
 
 
 
 
Q2.  A particle exists in an eigenstate ( )tx,Ψ ; an observable,q , is represented by an 

operator Q̂ . 

a) Write an expression for the expectation value of the observable,q .  

 
 
 
b) Write an expression for the uncertainty in q , namely q∆ .  
 
 
 
c) What is the Born interpretation of( )tx,Ψ ? 
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Q3.   Write down expressions for the operators relating to position and momentum, 
namely: X̂ , P̂ , 2X̂ and 2P̂ .   
 
 
 
 
 
 
 
 
 
Q4. Including as much relevant information as reasonably possible, sketch the 
potential, the wavefunction and the probability density for the ground state and first 
excited state of: 
 
a) A particle confined to an infinite 1D square well.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) A particle confined to a finite 1D square well. 
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Q5. At 0=t  a wave packet moving in one dimension is prepared in a state 
corresponding  to the wave function shown in fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: A wave packet at t = 0 
 

This can be written as: Ψ(x,0) = H for 
22

D
x

D ≤≤−  and Ψ(x,0) = 0 elsewhere 

 

a) By normalising the wave function, ( )0,xΨ , prove that 
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Q5. b) Prove that the uncertainty in position,x∆ , is given by:  
32

D
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Q6. Given the normalised ground state wavefunction of a quantum mechanical 
harmonic oscillator: 
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Prove that the momentum uncertainty, ∆p, is given by: 
2

2a
p

h=∆ .   

   


