
 1

Probability current and beams of particles 
 

 Let us consider the probability density        txtxtxtxP ,,,,
2   . So 

far we have encountered many cases where it is time independent i.e. it represents a 
stationary state, but what about the general case? 
  In general we can consider the rate of change of probability density, namely: 

 
t

txP


 ,

 

where we do not expect it to be zero. 
 
 Let us consider an example of the time independent eigenstate yielding a 
constant probability density: 
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 This is in contrast to a linear combination of such states, for example the state: 
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 The general form of the rate of change of probability density is given by: 
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 can be rewritten using the TDSE: 
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substituting into the definition for the rate of change of probability density gives: 
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 The rate of change of probability density,
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, is related to the probability 

current, j(x,t), by the simple relation: 
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so that the current itself is simply: 
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by taking into account the momentum operator, 
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For a De Broglie matter wave we have:    EtPx
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where A represents a number density (not a normalisation constant as the De Broglie 
matter wave is not normalisable). 
 
To summarise:  
The rate of change of probability density is equal to minus the current gradient 
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The current is given by: 
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and for a De Broglie wave it is simply: 

  222
, A

m

k
AvA

m

P
txj


  

ja jb 



 3

Reflection and Transmission – Scattering 
 
 
Consider a beam incident from the left to the right towards the potential barrier 
shown: 
 
 
 
 
 
 
 
Conservation of particles dictates: 
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We can also define the reflection (R)and transmission (T) coefficients as: 
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Of course, R + T = 1… 
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 reflected 

 transmitted 
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The potential step 
 
Consider a beam of particles incident from the left on the potential step shown below: 
 
 
 
 
 
 
 
 
 
 
 
Case I:  E > V0 
 
Region 1, V = 0 
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giving the solutions: 
  ikxikx BeAex   

which are identified as the incident and reflected waves… 
 
Region 2, V = V0 
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giving solutions: 
  iqxiqx DeCex   

which we reduce to:   iqxCex   since there is no source to the right of the step 
 
We can write the probability flux as: 
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We can now derive analytical expressions for these by applying boundary conditions 
at x = 0 
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CASE II: E < V0 
 
Region 1, V = 0 
Same as before, namely   ikxikx BeAex   
 
Region 2, V = V0  
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giving solutions: 
  xx DeCex     (decaying and rising exponentials) 

which we reduce to:   xCex    since the wavefunction must tend to zero at 
infinity. 
 
Let us now consider the probability density in the two regions.  
In region 1 we have:  
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That is a stationary wave pattern in region 1 due to the interference of the incident and 
reflected particles and an evanescent decay in the classically forbidden region 2. 
 


