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1 Review of Newtonian Mechanics

1.1 One particle

• Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, gen-
eralised coordinates.

• Newton’s second law (ṗ = F), conservation of momentum.

• Angular momentum, time evolution of L (L̇ = r × F), conservation of angu-
lar momentum. Consequences of conservation of angular momentum: planar
orbits, constant area velocity for the motion of two particles subject to gravi-
tational attraction.

• Work of a force along a certain path P (1, 2), kinetic energy. Proof that
W [P (1, 2)] = T2 − T1, where T := (m/2)ṙ2. Conservative systems (F =

−~∇V (r)), potential energy.

• The work of a conservative force field is independent of the path – and viceversa,
i.e. we have the theorem: A force F is conservative iff the work done along
any path P (1, 2) only depends on the initial and final positions but not on the
particular path. Energy conservation, E(r, ṙ) := T + V . Explicit check that
Ė = 0.

• Lecture 3. Examples of potentials. Free particle. Free falling particle, gravita-
tional potential. Harmonic oscillator.

• One-dimensional motions. The motion with a given energy E is limited to the
region where V ≤ E. Equilibrium positions, turning points.
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• The pendulum. Derivation of the equations of motion in three different ways:
1. Using Newton’s equations; 2. using energy conservation; 3. using the time
evolution of L.

1.2 Many particles

• Lectures 4-5. Internal and external forces, Newton third law (also called weak
law of action and reaction).

• Centre of mass coordinate, total momentum P. Proof that Ṗ = F, where F is
the sum of all external forces (assuming the weak law of action and reaction).

• Total angular momentum L, proof that L̇ =
∑

i ri ×F
(e)
i (assuming the strong

law of action and reaction, i.e. the interaction force between particle i and j is
directed along rij). Proof that L = R×P+L′, where L′ :=

∑
i r

′
i×p′

i. Proof

that L̇′ =
∑

i r
′
i × F

(e)
i .

• Work done by the forces acting on a system of n particles. Kinetic energy, proof

that T = TCOM + T ′ where TCOM := (1/2)
∑

imiṘ
2 and T ′ := (1/2)

∑
imiṙ′

2

i .

• Conservative forces. Proof that if the interaction depends only on the distance,
then the force is conservative. Internal and external potential energy, total
energy. Energy conservation.

• Definition of rigid body, work done by the internal forces.

• Gravitational force.

2 Lagrangian Mechanics

• Lecture 6. Functionals. Calculus of variations: extremal curves of a functional,
Euler-Lagrange equations. Examples: Curve of minimal length in euclidean
space. Curve of minimal length on a cylinder. Independence of the choice of
parametrisation. Many variables.

• Lectures 7-8. Applications to Newtonian Mechanics: Hamilton’s principle of
Least Action. Action, Lagrangian and Lagrange equations for a system of n
particles in a potential V (r1, . . . , rn).
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• Lagrangians differing by the total derivative of a function of the coordinates
give rise to the same motion.

• Generalised coordinates, generalised momenta, generalised forces. Cyclic co-
ordinates, conserved quantities. General form of the kinetic energy, T =
(1/2)aij(q)q̇iq̇j.

• (not in 2011) Constrained systems. Constraint forces. Time-independent holo-
nomic constraints. Variational principle for constrained systems. Equivalence
of the “conditional ” variational principle and the D’Alembert-Lagrange princi-
ple. Virtual displacements (tangent vectors). The work of the constraint force
is zero on virtual displacements.

• General procedure for solving problems with constraints. Simple example of a
constrained system: the pendulum.

• Kinetic energy and angular momentum in plane polar coordinates.

• Lecture 9. An important example: two body problem. Centre of mass coordi-
nate and relative motion. Proof that T ′ = (1/2)µṙ2 where µ := m1m2/(m1 +
m2). Proof that L′ = r×µṙ. Decoupling of the centre of mass motion. Motion
in a central field. Conservation of angular momentum, area velocity (Kepler’s
second law). Reduction to the equivalent one-dimensional problem, effective
potential. Qualitative study of the one-dimensional effective potential. Circu-
lar orbits. Limited and unlimited orbits.

• Lectures 10-11. Derivation of the orbits for the Kepler potential. Cartesian
equation of the orbits.

• Kinetic energy and angular momentum in spherical coordinates and cylindrical
coordinates.

• More (simple) examples: free particle in spherical and cylindrical coordinates.

• Examples: Harmonic oscillator (pendulum), spherical pendulum. Pendulum
with moving suspension point (HW). Double pendulum (HW).

• Lecture 12. Symmetries and conservation laws: Emmy Noether’s theorem. Noether’s
conserved charges. Expression of the conserved quantity in the case of a La-
grangian exactly invariant (δL = 0) under a certain transformation: momen-
tum/translations, angular momentum/rotations.
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• Lecture 13. Expression of the conserved quantity in the case of a Lagrangian
such that δL is a total time derivative, δL = d

dt
δF : energy/time translation.

Definition of Hamiltonian, H := p · q̇ − L. Proof that dH/dt = −∂L/∂t.
Particle in a potential with the symmetry of a helix, V := f(z + hφ).

3 Rigid Bodies

3.1 General Theory

• Lecture 14. Definition of body-fixed frame. Description of the motion in an
inertial frame and in the body-fixed frame. Translational (3) and rotational
(3) degrees of freedom of a rigid body. Fundamental formula of rigid kinematics
(expresses the velocity of a point in the rigid body in terms of the velocity of a

reference point in the body P0 and the angular velocity ω: vP = vP0 +ω×−−→P0P ).
Inertia tensor of a rigid body. Explicit expression.

• General expression of the kinetic energy of a rigid body T = (1/2)MṘ2 +
(1/2)(ω, IGω), where ω is the angular velocity in the body-fixed frame and IG
is the inertia tensor defined with respect to the centre of mass G, and R is
coordinate of the centre of mass in the inertial system.

• Expression for the kinetic energy of a rigid body with a fixed point O′,
T = (1/2)(ω, I′Oω).

• Lecture 15. General properties of the inertia tensor: symmetry, additivity; ex-
pression for a continuum body. Principal axes, principal moments, principal
axis system of a rigid body.

• Lectures 16-17. Examples of inertia tensors: homogeneous rigid rod, sphere,
cuboid. More examples in problem class and homework: ring, disk etc. Rigid
bodies with an axis of symmetry.

• Rigid body rotating about a fixed axis. Moment of inertia with respect to a
fixed axis n, In. Formula for In, In =

∑
imid

2
i , where di is the distance of a

generic point Pi in the rigid body from the axis. Kinetic energy of a rigid body
rotating about a fixed axis, T = (1/2)ω2In.

• Parallel axis theorem (also known as Huygens-Steiner theorem).

• Solution of the physical pendulum. Small oscillations.
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• Lecture 18. Angular momentum of a rigid body about a fixed point T . Proof
that LT = R ×MṘ + IGω, where R is the centre of mass coordinate in the
system with origin T and IG is the inertia tensor with respect toe the centre of
mass. Proof that LG = IGω, where LG is the angular momentum of the rigid
body with respect to the centre of mass.

• Re-expressing the kinetic energy of a rigid body as T = (1/2)MṘ2+(1/2)ω·LG.

• Re-expressing the kinetic energy of a rigid body with a fixed point O′ as T =
(1/2)ω · LO′ .

3.2 Spinning Tops

• Derivation of Euler’s equations.

• Study of the stability of the rotation near one of the principal axes for the
asymmetric top (the “tennis racket theorem”).

Reading week

• Lectures 19-20. Solution of Euler’s equations in the case of a free symmetric
top (I1 = I2).

• Definition of the Euler angles (φ, θ, ψ). Expression of the components of the
angular velocity in the body fixed-frame (ω1, ω2, ω3) in terms of the angular
velocities φ̇, θ̇, ψ̇: ω1 = φ̇ sin θ sinψ + θ̇ cosψ, ω2 = φ̇ sin θ cosψ − θ̇ sinψ,
ω3 = φ̇ cos θ + ψ̇.

• Expression for the kinetic energy of a symmetric top (I1 = I2):
T = (I1/2)(φ̇2 sin2 θ + θ̇2) + (I3/2)(φ̇ cos θ + ψ̇)2.

• Lecture 21. Lagrangian for the free symmetric spinning top. Conserved quanti-
ties. Precession of the top axis of symmetry about the direction of the angular
momentum. Coplanarity of the top symmetry axis, ω, and the angular mo-
mentum L := LẐ. Absence of nutation (θ̇ = 0). Expressions for the angular
velocities φ̇, φ̇ = L/I1 (precession of the top symmetry axis about the direc-
tion of the angular momentum) and ψ̇, ψ̇ = L3(I1 − I3)/(I1I3) (rotation of the
top about its symmetry axis), and equation for the inclination θ of the top

symmetry axis, E = L2

2

(
sin2 θ
I1

+ cos2 θ
I3

)
.
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• Lectures 22-23. Motion of a frisbee subject to gravity: decoupling of the centre
of mass motion. Revisiting the free spinning top, making contact with Euler’s
equations. Ω = ψ̇ with Ω = ω0

3 (I1 − I3)/I1. Study of the rotational motion.
Feynman’s plate: Is the spinning about the symmetry axis faster than the
wobbling? Proof that φ̇ = −2ψ̇/ cos θ ∼ −2ψ̇ if the angle is slight.

• Lagrangian for the symmetric top with a fixed point in a gravity field (La-
grange’s top). Study of the case LZ 6= L3. One-dimensional effective potential
for the inclination θ of the top axis with respect to the vertical Ẑ-direction.
Qualitative analysis of the precession and nutation of the top symmetry axis.

• Sleeping top (θ = 0), stability of the solution for the case L2
3 > 4Mgd I1, where

d is the distance of the centre of mass from the fixed point.

• Lecture 24. Used for a double problem class.

4 Small Oscillations

• Lectures 25-26. Motivations. Definition of equilibrium position. One-dimensional
case, conditions for the stability of the equilibrium position, Lagrangian of the
small oscillations, frequency of small oscillations.

• Multi-dimensional case. Conditions for the stability of the equilibrium posi-
tion, Lagrangian of the small oscillations. Secular (or characteristic) equation
det(V − ω2T ) = 0. Normal frequencies and normal modes.

• Lecture 27. Examples. Bead on a wire. Pendulum with moving suspension
point. Double pendulum. Linear tri-atomic molecule.

5 Hamiltonian Mechanics

• Lectures 28-29. Legendre transformation. Hamiltonian and Hamilton’s equa-
tions. Phase space.

• Poisson brackets. Time evolution of a physical observable A = A(q, p, t): Ȧ =
{A,H}+ ∂A/∂t. Time evolution of the Hamiltonian, Ḣ = ∂H/∂t = −∂L/∂t.

• Examples. Free particle, harmonic oscillator, particle in a central potential.
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• Lecture 30. Lagrangian and Hamiltonian for a charged particle in an electro-
magnetic field. Lorentz force. Gauge transformations, gauge-invariance of the
action.

• Applications. Motion of a charged particle in a constant, uniform magnetic
field. Solution to the equations of motion. Lagrangian for a particle in a
constant magnetic field. A=1/2 (B× r). Noether charges associated to trans-
lations and rotations around the direction of the magnetic field.

• Lectures 31-32. Properties of the Poisson bracket. {A,BC} = {A,B}C +
B{A,C}. Jacobi identity: {A, {B,C} + {B, {C,A} + {C, {A,B} = 0. Proof
that if A and B are two conserved quantities ({A,H} = {B,H} = 0), then
{A,B} is also conserved, i.e. {{A,B}, H} = 0 (Poisson’s theorem).

6 Motion in a non-inertial frame

• Derivation of the equations of motion in a non-inertial frame. Inertial forces.
Centrifugal acceleration, Coriolis acceleration.

• Foucault’s pendulum.

A note on books

Please consult the list of suggested textbooks linked from the web-page of the course,
here. The material discussed in the lectures can be found in most textbooks on
classical/analytic mechanics. For section 1 (review of Newtonian mechanics) I mostly
follow Goldstein. For the discussion of the dynamics of rigid bodies (section 3) I
follow very closely the presentation of Landau and Lifschitz.
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