Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Alex Leithes

From arXiv:1403.7661 (submitted to CQG) by AL and Karim A. Malik

Overview

Contents

- Why Conserved Quantities are Important
- The Standard Model of Cosmology Flat FRW
- Conserved Quantities in Perturbed LTB
- Conserved Quantities in Perturbed Lemaître and Flat FRW
- Further Questions of Perturbed LTB

Why are Conserved Quantities Important?

Why are Gauge Invariant Conserved Quantities Important?

- Conserved quantities are important, allowing us to link observations at late times to the physics at earlier/all times e.g. in standard cosmology: inflation to CMB
- Gauge Invariance: i.e. invariant under infinitesimal coordinate shifts $\widetilde{x^\mu}=x^\mu+\delta x^\mu$ to remove gauge artefacts
- We construct GI conserved quantities in LTB cosmology (simplest inhomogeneous model)

Flat FRW vs LTB

Flat FRW vs LTB

• FRW: Maximally symmetric spatial section - scale factor time dependent only

$$ds^{2} = -dt^{2} + a^{2}(t)dr^{2} + a^{2}(t)r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

 LTB: Spherically symmetric spatial section - scale factors time and r coordinate dependent - Dust dominated

$$ds^{2} = -dt^{2} + X^{2}(r,t)dr^{2} + Y^{2}(r,t)\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)^{a}$$

^aBondi 1947

The Standard Model of Cosmology - Flat FRW

The Standard Model of Cosmology - Flat FRW

• Background metric:

$$ds^2 = -dt^2 + a(t)^2 \delta_{ij} dx^i dx^j$$

• Perturbed metric:

$$ds^{2} = -(1+2\Phi)dt^{2} + 2aB_{i}dx^{i}dt + a(t)^{2}(\delta_{ij} + 2C_{ij})dx^{i}dx^{j}$$

with scalar, vector and tensor perturbations^a

^ae.g. Bardeen 1980

The Standard Model of Cosmology - Flat FRW

The Standard Model of Cosmology - Flat FRW

• Further decomposition of 3-spatial perturbations gives curvature perturbation ψ , identified with the intrinsic scalar curvature: $C_{ij} = E_{,ij} - \psi \delta_{ij} + \text{vector} + \text{tensor quantities}^*$

^{*} On 3-spatial hypersurfaces

The Standard Model of Cosmology - Flat FRW

Constructing Gauge Invariant Quantities

- Splitting quantities into background + perturbation: no longer covariant - gauge dependent; construct gauge invariant quantities
- General gauge transformations:

$$\widetilde{\delta \mathbf{T}} = \delta \mathbf{T} + \pounds_{\delta x^{\mu}} \bar{\mathbf{T}}$$

Tilde denotes new coordinates

$$\widetilde{x^{\mu}} = x^{\mu} + \delta x^{\mu}$$

bar denotes background.

• Key gauge transformations:

$$\widetilde{\psi_{\text{FRW}}} = \psi_{\text{FRW}} + \frac{\dot{a}}{a} \delta t$$

$$\widetilde{\delta \rho_{\text{FRW}}} = \delta \rho_{\text{FRW}} + \dot{\rho} \delta t$$

The Standard Model of Cosmology - Flat FRW

Constructing Gauge Invariant Quantities

• Gauge choice: uniform density hypersurfaces, $\delta \widehat{\rho}_{\mathrm{FRW}} = 0$

$$\delta t = -\frac{\delta \rho_{\text{FRW}}}{\dot{\bar{\rho}}}$$

Get gauge invariant curvature perturbation (on constant density hypersurfaces)

$$\widetilde{\psi_{\text{FRW}}}\Big|_{\widetilde{\delta\rho_{\text{FRW}}}=0} = -\zeta \equiv \psi_{\text{FRW}} + \frac{\dot{a}/a}{\dot{\bar{\rho}}}\delta\rho_{\text{FRW}}$$

• Evolution equations for ζ from energy conservation $\nabla_{\mu}T^{\mu\nu}=0...$

The Standard Model of Cosmology - Flat FRW

Constructing Gauge Invariant Quantities

- Evolution equations for ζ from energy conservation $\nabla_{\mu}T^{\mu\nu}=0...$
- Evolution equation for density perturbation on large scales

$$\dot{\delta\rho}_{\mathrm{FRW}} = -3H(\delta\rho_{\mathrm{FRW}} + \delta P) + 3(\bar{\rho} + \bar{P})\dot{\psi}_{\mathrm{FRW}}$$

In the large scale limit,

$$\dot{\zeta} = -\frac{H}{\bar{\rho} + \bar{P}} \delta P_{\text{nad}}$$

(:
$$\delta P = \delta \rho c_s^2 + \delta P_{\rm nad}$$
 and $\widetilde{\delta \rho_{\rm FRW}} = 0$ selected)

ullet ζ conserved for barotropic fluid in large scale limit.

The Standard Model of Cosmology - Flat FRW

Constructing Gauge Invariant Quantities

• Alternatively to ζ we can construct the gauge invariant density perturbation (on flat hypersurfaces)

$$\delta \rho \Big|_{\widetilde{\psi}_{\text{FRW}} = 0} = \delta \rho_{\text{FRW}} + \frac{\dot{\bar{\rho}}}{H} \psi_{\text{FRW}}$$

 As stated earlier - conserved perturbed quantities allow us to easily relate early to late times (e.g. inflation to CMB)

$$\begin{split} & :: \delta \rho \Big|_{\widetilde{\psi}_{\mathrm{FRW}} = 0} = -\frac{\dot{\bar{\rho}}}{H} \zeta \\ & \left(\delta \rho \Big|_{\widetilde{\psi}_{\mathrm{FRW}} = 0} \text{ and } \zeta \text{ are GI} \right) \end{split}$$

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Perturbed LTB

• Background metric:

$$ds^{2} = -dt^{2} + X^{2}(r,t)dr^{2} + Y^{2}(r,t) \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

Perturbed Metric:

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}d\mathcal{X}^{i}dt + (\delta_{ij} + 2C_{ij})d\mathcal{X}^{i}d\mathcal{X}^{j}$$

where $d\mathcal{X}^i=[X(r,t)dr,Y(r,t)d\theta,Y(r,t)\sin\theta d\phi]$ and we reserve dx^i for $[dr,d\theta,d\phi]$

•

$$X(r,t) = \frac{1}{W(r)} \frac{\partial Y(r,t)}{\partial r},$$

where W(r) is an arbitrary function of r.

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Perturbed LTB

- We have performed 1+3 decomposition into time and spatial sections of metric
- In FRW we have S, V, T decomposition, here it is even more complicated and needs spherical harmonics but...^a
- our undecomposed perturbations give simpler expressions, easing constructing conserved quantities.

^ae.g. Clarkson, Clifton, February 2009

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Perturbed LTB

• Background Energy Conservation:

$$\dot{\rho} + \rho (H_X + 2H_Y) = 0$$
, $H_X = \frac{X}{X}$, $H_Y = \frac{Y}{Y}$

• Perturbed Energy Conservation:

$$\delta \dot{\rho} + (\delta \rho + \delta P) (H_X + 2H_Y) + \bar{\rho}' v^r + \bar{\rho} (\dot{\mathbf{C}}_{rr} + \dot{\mathbf{C}}_{\theta\theta} + \dot{\mathbf{C}}_{\phi\phi} + \partial_r v^r + \partial_\theta v^\theta + \partial_\phi v^\phi + \left[\frac{X'}{X} + 2\frac{Y'}{Y} \right] v^r + \cot \theta v^\theta) = 0$$

Convenient to define spatial metric perturbation:

$$3\psi = \frac{1}{2}\delta g_k^k = C_{rr} + C_{\theta\theta} + C_{\phi\phi}$$

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Constructing Gauge Invariant Quantities

• ψ transformation behaviour:

$$3\tilde{\psi} = 3\psi + \left[\frac{\dot{X}}{X} + 2\frac{\dot{Y}}{Y}\right] \delta t + \left[\frac{X'}{X} + 2\frac{Y'}{Y}\right] \delta r + \partial_i \delta x^i + \delta \theta \cot \theta,$$

• $\delta \rho$ and 3-velocity transformation behaviour:

$$\delta \tilde{\rho} = \delta \rho + \dot{\bar{\rho}} \delta t + \bar{\rho}' \delta r$$
$$\tilde{v}^i = v^i - \dot{\delta x}^i$$

Gauge choices; uniform density (partially fixes the t coordinate):

$$\delta t \Big|_{\delta \tilde{\rho} = 0} = -\frac{1}{\dot{\bar{\rho}}} \left[\delta \rho + \bar{\rho}' \delta r \right]$$

comoving (completes the gauge fixing in the spatial coordinates):

$$\delta x^i = \int v^i dt$$

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Constructing Gauge Invariant Quantities

 Gives gauge invariant Spatial Metric Trace Perturbation (SMTP) on comoving, uniform density hypersurfaces:

$$-\zeta_{\text{SMTP}} = \psi + \frac{\delta\rho}{3\bar{\rho}} + \frac{1}{3} \left\{ \left(\frac{X'}{X} + 2\frac{Y'}{Y} + \frac{\bar{\rho}'}{\bar{\rho}} \right) \int v^r dt + \partial_r \int v^r dt + \partial_\theta \int v^\theta dt + \partial_\phi \int v^\phi dt + \cot\theta \int v^\theta dt \right\}$$

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Constructing Gauge Invariant Quantities

• Alternatively can fix the gauge on uniform curvature hypersurfaces (i.e. $\widetilde{\psi}\equiv 0)$

$$\delta t = -\frac{1}{H_X + 2H_Y} \left[3\psi + \left(\frac{X'}{X} + 2\frac{Y'}{Y} \right) \delta r + \partial_i \delta x^i + \delta \theta \cot \theta \right]$$

 \bullet and co-moving as before to fix the δx^i terms to give

$$\delta \tilde{\rho} \Big|_{\psi=0} = \delta \rho + \bar{\rho} \left\{ 3\psi + \left(\frac{X'}{X} + 2\frac{Y'}{Y} + \frac{\bar{\rho}'}{\bar{\rho}} \right) \int v^r dt + \partial_r \int v^r dt + \partial_\theta \int v^\theta dt + \partial_\phi \int v^\phi dt + \cot\theta \int v^\theta dt \right\}$$

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Constructing Gauge Invariant Quantities

ullet May be related to ζ_{SMTP} as

$$\delta \tilde{\rho} \Big|_{\psi=0} = -3\bar{\rho}\zeta_{\rm SMTP}$$

• c.f. ζ and $\delta \tilde{\rho} \Big|_{\widetilde{\psi_{\mathrm{FRW}}} = 0}$ in flat FRW

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Conserved Quantities in Perturbed LTB

• $\zeta_{\rm SMTP}$ Evolution Equation:

$$\dot{\zeta}_{\text{SMTP}} = \frac{H_X + 2H_Y}{3\bar{\rho}} \delta P_{\text{nad}}$$

- Valid on all scales.
- ullet For barotropic fluids $\dot{\zeta}_{\mathrm{SMTP}}=0$

Perturbed

"Im right there in the room, and no one even acknowledges me."

The Elephant in the Room

• Pressure perturbation around zero background?

Perturbations and Conservation in Lemaître Cosmology

Perturbed Lemaître

- Allows for background pressure (additional scale factor on the t coordinate, reduces to LTB or FRW in limits)
- Background metric:

$$ds^{2} = -f^{2}(r,t)dt^{2} + X^{2}(r,t)dr^{2} + Y^{2}(r,t)\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right),$$

Perturbed Metric:

$$ds^{2} = -f^{2}(r,t)(1+2\Phi)dt^{2} + 2f(r,t)B_{i}d\mathcal{X}^{i}dt + (\delta_{ij} + 2C_{ij})d\mathcal{X}^{i}d\mathcal{X}^{j}$$

where $d\mathcal{X}^i = [X(r,t)dr,Y(r,t)d\theta,Y(r,t)\sin\theta d\phi]$ and we reserve dx^i for $[dr,d\theta,d\phi]$

Perturbations and Conservation in Lemaître Cosmology

Constructing Gauge Invariant Quantities

• Similar procedure to LTB: the perturbed energy conservation equation is

$$\delta \dot{\rho} + \left(\delta \rho + \delta P\right) \left(\frac{\dot{X}}{X} + 2\frac{\dot{Y}}{Y}\right) + (\bar{\rho}' + \bar{P}')v^r + \frac{fB_r}{X}\bar{P}'$$

$$+ \left(\partial_{\theta} \frac{B_{\theta}}{Y} + \partial_{\phi} \frac{B_{\phi}}{Y \sin \theta}\right) f\bar{P} + (\bar{\rho} + \bar{P}) \left(\dot{\psi} + v^{r'} + \partial_{\theta} v^{\theta} + \partial_{\phi} v^{\phi}\right)$$

$$+ \left[\frac{f'}{f} + \frac{X'}{X} + 2\frac{Y'}{Y}\right] v^r + \frac{B_r f'}{X} + \cot \theta v^{\theta} = 0.$$

and we construct the gauge invariant quantity

$$-\zeta_{\text{SMTP}} = \psi + \frac{\delta \rho}{3(\bar{\rho} + \bar{P})} + \frac{1}{3} \left\{ \left(\frac{X'}{X} + 2\frac{Y'}{Y} + \frac{\bar{\rho}'}{\bar{\rho} + \bar{P}} \right) \int v^r dt + \partial_r \int v^r dt + \partial_\theta \int v^\theta dt + \partial_\phi \int v^\phi dt + \cot\theta \int v^\theta dt \right\}$$

Alex Leithes (QMUL) Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology QMUL 201-21/28

Perturbations and Conservation in Lemaître Cosmology

Constructing Gauge Invariant Quantities

ullet The evolution equation for ζ_{SMTP}

$$-\dot{\zeta}_{\text{SMTP}} = \frac{\dot{\bar{\rho}}}{(\bar{\rho} + \bar{P})^2} \delta P_{\text{nad}} - \frac{P'}{(\bar{\rho} + \bar{P})} v^r - \frac{f B_r}{X (\bar{\rho} + \bar{P})} \bar{P}'$$

$$- \left(\partial_{\theta} \frac{B_{\theta}}{Y} + \partial_{\phi} \frac{B_{\phi}}{Y \sin \theta} \right) \frac{f \bar{P}}{(\bar{\rho} + \bar{P})}$$

$$+ \left[\partial_t \left(\frac{X'}{X} + \frac{Y'}{Y} + \frac{\bar{\rho}'}{\bar{\rho} + \bar{P}} \right) \right] \int v^r dt - \frac{f'}{f} v^r + \frac{B_r f'}{X}$$

which becomes in the large scale limit (like ζ in FRW)

$$\dot{\zeta}_{\text{SMTP}} = \frac{H_X + 2H_Y}{3(\bar{\rho} + \bar{P})} \, \delta P_{\text{nad}}$$

c.f. LTB - all scales

Perturbations and Conservation in Flat FRW Cosmology

Constructing Gauge Invariant Quantities

ullet The evolution equation for ζ_{SMTP} in flat FRW

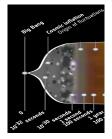
$$\dot{\zeta}_{\text{SMTP}} = \frac{H}{(\bar{\rho} + \bar{P})} \, \delta P_{\text{nad}}$$

- valid on all scales and $\zeta_{\rm SMTP}$ conserved for barotropic fluid (like LTB) $(\widetilde{\delta \rho_{\rm FRW}}=0$ and $\widetilde{v}=0$ selected).
- c.f. ζ FRW

$$\dot{\zeta} = -\frac{H}{\bar{\rho} + \bar{P}} \delta P_{\text{nad}}$$

valid only in large scale limit ($\delta \rho_{\mathrm{FRW}} = 0$ selected)

Further Questions of Perturbed LTB



Further Questions of Perturbed LTB (Beyond scope of paper)

- At first glance LTB seems incompatible with inflation (inhomogeneous)
- Without inflation then what seeds the primordial cosmological perturbations?
- Without inflation how are problems such as relics explained?
- These arguments could apply to any inhomogeneous cosmology

Further Questions of Perturbed LTB

Further Questions of Perturbed LTB

- Some attempts made to reconcile LTB with inflation e.g. Multistream inflation - Wang, Li 2010
- Would allow scalar field to generate perturbations once again. Allow dilution of relic particle densities
- LTB not applicable at early times when background pressure important.
- But other inhomogeneous cosmologies may provide an answer but...
- Potentially still needs an answer of how the universe came to be well described by an inhomogeneous model in the first place...

Further Questions of Perturbed LTB

Final Word on Further Questions

- Should we discard the Copernican principle?
- If observations say we should, then yes.
- Maybe we are only throwing it away a bit an LTB patch among many, in a larger homogeneous whole.

Perturbations and Conservation in Lemaître-Tolman-Bondi Cosmology

Conclusion and Further Research

•

$$\dot{\zeta}_{\rm SMTP} = \frac{H_X + 2H_Y}{3\bar{\rho}} \delta P_{\rm nad}$$

- Research already extended to other spacetimes. i.e. $\dot{\zeta}_{\rm SMTP}$ already extended to Lemaitre and FRW
- Potential wider use of $\zeta_{\rm SMTP}$ in inhomogeneous spacetimes generally versus standard FRW model.

arXiv:1403.7661

Additional notes - time permitting

Additional Notes

- Comparison with 2+2 Spherical Harmonic Decomposition
- ζ_{SMTP} in Clifton, Clarkson, February formalism:

$$\begin{split} -\zeta_{\text{SMTP}} &= \frac{1}{6} \left(\frac{(1-\kappa r^2)}{a^2_{\parallel}} h_{rr} \mathcal{Y} + \frac{h \ \bar{\mathcal{Y}}_{\theta\theta}}{a_{\perp}^2 r^2} + \frac{h \ \bar{\mathcal{Y}}_{\phi\phi}}{a_{\perp}^2 r^2 \sin^2{\theta}} + 2K \mathcal{Y} + G \mathcal{Y}_{:\theta\theta} + \frac{G \mathcal{Y}_{:\phi\theta}}{\sin^2{\theta}} \right) \\ &+ \frac{\delta \rho}{3\bar{\rho}} + \frac{1}{3} \left\{ \partial_{\theta} \int \frac{1}{a_{\perp}^2 r^2} \left(\bar{\mathbf{v}} \ \bar{\mathcal{Y}}_{\theta} + \tilde{\mathbf{v}} \ \mathcal{Y}_{\theta} - h_t^{\text{axial}} \bar{\mathcal{Y}}_{\theta} - h_t^{\text{polar}} \mathcal{Y}_{\theta} \right) dt \right. \\ &+ \left. \partial_{\phi} \int \frac{1}{a_{\perp}^2 r^2 \sin^2{\theta}} \left(\bar{\mathbf{v}} \ \bar{\mathcal{Y}}_{\phi} + \tilde{\mathbf{v}} \ \mathcal{Y}_{\phi} - h_t^{\text{axial}} \bar{\mathcal{Y}}_{\phi} - h_t^{\text{polar}} \mathcal{Y}_{\phi} \right) dt \\ &+ \cot{\theta} \int \frac{1}{a_{\perp}^2 r^2} \left(\bar{\mathbf{v}} \ \bar{\mathcal{Y}}_{\theta} + \tilde{\mathbf{v}} \ \mathcal{Y}_{\theta} - h_t^{\text{axial}} \bar{\mathcal{Y}}_{\theta} - h_t^{\text{polar}} \mathcal{Y}_{\theta} \right) dt \\ &- \partial_r \int \frac{\mathcal{Y}(1-\kappa r^2)}{a_{\parallel}^2} \left(\frac{1}{2} h_{tr} + \frac{a_{\parallel}}{\sqrt{(1-\kappa r^2)}} \tilde{w} \right) dt \\ &- \left[\left(\frac{a_{\parallel}}{\sqrt{(1-\kappa r^2)}} \right)^{\dagger} + 2 \frac{(a_{\perp} r)^{\dagger} a_{\parallel}}{a_{\perp} r \sqrt{(1-\kappa r^2)}} \\ &+ \frac{\bar{\rho}^{\dagger} a_{\parallel}}{\bar{\rho} \sqrt{(1-\kappa r^2)}} \right] \int \frac{(1-\kappa r^2)}{a^2_{\parallel}} \mathcal{Y} \left(\frac{1}{2} h_{tr} + \frac{a_{\parallel}}{\sqrt{(1-\kappa r^2)}} \tilde{w} \right) dt \right\}, \end{split}$$