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Section A 

A1. i)                                                                   ii) 
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4 lattice points per unit cell. [2]                        
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Green Ga, yellow As  [4] 
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A5. Total ground state electrons = 2. V
kVk FF
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Hence electron density, 
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A6. Fermi energy [2] 
 
A7. Electron-wave reflection from periodic lattice       [2] 
 
A8. Same periodicity as the Bravais lattice    [2] 
 
A9. N= number of atoms, a= interatomic spacing 
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A10.        
. i) ii) iii) 
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Metal Semiconductor Insulator 

~5 eV 

Two spin orientations k-space volume, kF=Fermi wavevector 

Two spin orientations 
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A11.  
 
 
 
 
                                        k+δk,   t+δt,    v+δv       
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where m* is the effective mass, hence:    
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A12. Hole [2] 
 
A13. i) Diffusion and drift currents [2], ii) diffusion current [2] 
 
A14. Ultra-high vacuum chamber, molecular beam sources, lattice-matched substrate, 
growth-monitoring techniques.                                                                                   [4] 
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Section B 
 

B1. a) 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                     [2] 
 
b) Add impurity atoms with +1 valence relative to host semiconductor; excess 
electron ionised by thermal energy and electron donated to conduction band. Add 
impurity atoms with -1 valence relative to host semiconductor; excess hole ionised by 
thermal energy and accepted by valence band.                                                     [3] 
 

c) Assume CB occupancy <<1,     
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Probability of hole in VB,          1-
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Can use free electron concepts at bottom of conduction band and top of valence band, 
hence: 
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Where,    mc*=conduction band effective mass,    mv*=valence band effective mass, 
and C= constant  
 
Number of electrons in CB,   
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substitute y=(ε-εc)/kBT 
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which gives, 
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where Nc is the effective number density of accessible states at εc  
 
Similarly the hole density, p is given by 
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d) From c): 
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Significance: can calculate intrinsic carrier density, i.e. n=p 
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B2. a) Force, EF e−=  
 

Equation of motion, 
dt

dk
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mF h==  , hence     
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b) A and B are equivalent states: real and k-space path of electron is a 1D oscillator. 
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c) Group velocity of a wave packet, 
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In 1D,    
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d) Equation of motion, 
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If n electrons per unit volume and vD= drift velocity  
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Electrical conductivity σ �defined as j=�σ.E                                                     
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Mobility, the drift velocity per unit electric field, µ =|vD|/E, for electrons is defined as  
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τe and τh are not necessarily the same.                                                                       [5] 
 
 
 
B3.  a) MBE machine: 

 

Al 



A quantum well comprises a layer of narrow band-gap semiconductor, such as GaAs, 
sandwiched between two wider band-gap semiconductors, such as AlGaAs (the 
complete structure is called a heterostructure). All semiconductors used to make the 
structure must be lattice-matched to maintain crystalline periodicity across the 
junction.  
 

 
From the above diagram GaAs (narrow band-gap) and AlGaAs (wide band-gap) are 
lattice-matched. Since the band-gap energy changes at the interface there are 
discontinuities in the conduction band and valence band. These discontinuities, ∆εc 
and ∆εv, depend on the semiconductor materials and their doping. In the case of a 
GaAs/AlGaAs heterostructure ∆εc is greater than ∆εv, resulting in the band structure 
given below. Conduction electrons in the x-direction are confined due to the energy 
barrier ∆εc. If the confinement length is small we can treat the electron as in a 1D 
potential well in the x-direction but as if it were free in the yz plane.                                   
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b) Current I=veN/L,     where N = total number of electrons in 1D wire length L 
 
Conductance,     G = I/V = veN/LV                                                                              
 
Drop in potential energy of electron going from one end to the other,  ∆ε=eV 
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N  =  2   x  number of quantum states in range ∆ε 
 
 
 
 
In 1D wire, only discrete values of electron wavelength λ are possible 
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⇒  Number of electrons in velocity range ∆v,   
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Also, kinetic energy of electron, 
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⇒      Quantum of resistance=1/G=12.9kΩ                                                                 [5] 
 
c) Quantum conductance independent of all system parameters.                                [5] 
 
 
 
 

B4. a) Metals have high free electron density ⇒ positive ion cores are screened 
therefore free electron model is a good description of electron system. The low energy 
region of the nearly free electron dispersion relation approximates to the parabolic 
free electron dispersion relation therefore free electron concepts can be used to 
describe electrons in a semiconductor conduction band.                                             [5]                                                                                             
 

b) (i)  Using the 3D free electron Fermi gas model show that the expression for the 
Fermi energy in terms of the free electron density, n, is given by  
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Fcc → 4 atom/unit cell → n=4/a3= 8.5 x 1028 m-3, put into above equation→ εF= 6.99 
eV                                                                                                                              [5] 
 
 

From Pauli principle 



(ii) Number of electrons in Fermi disc, N = ( ) A
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                                                  k-space area 
                                                                                                       A=real space area 

Electron density, 
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(iii) Electrons density = 1/(0.8 x 10-9) = 1.25 x 109 m-1 

 

Number of electrons in Fermi length = ( ) L
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                                                    k-space length            L=real space length 

Electron density, 
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(c) Use formula from part (b) to find Fε =6.96 eV                                                                                  
Thermal energy is kBT 
Room temperature≈300 K 
⇒ kBT = 0.025 eV                                                                                                 

Fε / kBT ≈ 280 ⇒ gas is highly degenerate                                                                  [5]     
         


