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Semiconductors. Carrier mobility 

Mobilty, the drift velocity per unit electric field, µ =|vD|/E, for electrons can be expressed as  
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We can see that it is explicitly related to the scattering time and therefore should depend on various 

scattering mechanisms.  The most important scattering processes involve interactions of electrons 

(or holes) with lattice vibrations (or phonons) and with impurity atoms. Both processes are 

temperature dependent and electron-phonon scattering dominates at high T while impurity-related 

scattering become important at low T. The overall scattering time can therefore be expressed as: 
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Let’s examine these processes in some details to understand the origins of the scattering 

mechanisms and their contribution to mobility and ultimately to conductivity. We shall first consider 

electron-phonon scattering in a semi-classical approximation. 

Electron-phonon scattering 

 We saw that in general longitudinal and transverse vibrations are possible in a crystal lattice. It is 

longitudinal vibrations that will be contributing to the scattering. We observe that such a vibration 

would result in alternating regions of compression and extension of the lattice. If we also recollect 

that the electronic structure of the lattice is defined by the atomic positions and interatomic 

interactions we conclude that such vibrations should lead to the altering electronic structure: 

 

 

 

Which we can approximate as: 
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And since we can represent an electron in a conduction band by a free particle wave function the 

problem is reduced to a scattering from a potential step: 

 

 

The incident wave is y��� = ������,	 reflected wave is then y
�
��� = �������, and transmitted wave 

is y
�
��� = 	�����. The energy of the incident and transmitted electron are then: 
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Since the wavefunction and its derivative must be continuous at the barrier (x=0), we may write: 
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These conditions will result in: 
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Resulting in reflection and transmission probabilities R and T: 
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Now, if the step �
�  is small then �� ≅ �	 and hence 
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��while �
� can be related to the 

volume change as: 
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Where K is a deformation potential constant.  We need to link R and temperature. This can be done 

if we rewrite above as: 

�
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and link volume and temperature.  A longitudinal wave passing through crystal and resulting in the 

volume change should also exert local pressure ��. The local energy associated with this is then  

proportional to �� × �� and since the source of the energy is thermal the magnitude must be 

proportional to ��� or: 
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We are almost there except it would be good if we can exclude pressure explicitly by introducing the 

compressibility K: 

� =
1

�	
��
�� 

and expressing �� in terms of K to obtain: 
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We can now substitute this result into the expression for reflection R to obtain: 


 ≅ �
�
∗���

�ħ��
�
�
��=


�
∗�

�ħ��
�
�
× ����� × ����

��
 

Now, the probability of a reflection (scattering) in a distance �� travelled by an electron is ��/λ� 

where λ� is the electron mean free path. The volume �	 over which we evaluate our disturbance is 

of the order of λ, where λ is the phonon wavelength. Then we can equate �/λ� (probability of 

scattering over the length λ) to R above to obtain: 
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If we now recollect that �� = 	 ��/�,�  where �̅~���/  we then obtain �� ≅ ����� × ���/� which 

will reflect the temperature-dependence of the electron-phonon scattering component.  

A brief analysis of the scattering on charge impurities. 

 

Assume that a carrier is scattered when its potential energy in the field of the scatterer is similar to 

its kinetic energy. The Coulombic potential at distance r 
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The kinetic energy is thermal so T∝ε  

 

Therefore we can define the effective radius of the scatterer as  
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Hence we get a scattering cross-section  
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The rate at which the carrier encounters scatterers is proportional to the carrier thermal velocity 
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so overall       2
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−∝ Tp  and the scattering time is a reverse of that hence �� ≅ ����� × ��/� 
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The overall effect is the sum of the two resulting in: 

So considering charged impurity scattering and phonon scattering 
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(Remember that the probability of scattering is equal to 1/t) 
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Mobility peaks at intermediate temperatures – typically 100-200 K 

 

To find the conductivity we need to multiply by the number of carriers giving the result in the 

following graph 
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