
Dr. A. Sapelkin, Jan 2012 
 

Semiconductors 

Carrier statistics and Density of States 

In the previous chapter we derived a microscopic expressions for the conductivity and the mobility in 

an electric field for free carriers based on the band structure of a periodic systems. We introduced a 

concept of the effective mass as we progressed from classical to semi-classical microscopic 

description to account for the QM nature of an electron. Here we shall further investigate QM 

effects in materials with non-zero value of the energy gap – εg. 

We saw that the conductivity σ was a function of the temperature and identified possible source of 

that as n(T) where n is carrier concentration. Hence, further investigation of this dependence require 

a closer investigation the source of the temperature dependence of carrier concentration.  Once 

again, the QM properties of an electron have to be taken into account, specifically: (i) wave 

character of electrons; (ii) Pauli exclusion principle. The former results in only a finite number of 

solutions of Schrödinger equation within the energy range ε and ε+dε. The latter results in that an 

eigenstate can only be occupied by two electrons of opposite spin.  

 

Energy level occupancy in a classical case (a) vs Pauli Exclusion Principle (b). 

Now, we shall reduce the full ε(k) dependence to a simple energy diagram:  

 

The Fermi-Dirac distribution gives the probability of an energy state to be occupied at a given 

temperature:  
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Resulting in the following picture: 

Ref: http://hyperphysics.phy-astr.gsu.edu 

An important point to observe here is a finite (albeit small) electron concentration in the conduction 

band at non-zero temperature.   

Intrinsic semiconductors. 

Now we are ready to look into the microscopic parameter of interest – the electron concentration. 

This, as in the case of the free-electron model involves counting the number of electrons, except this 

time these will be electrons in the conduction band. We remember that density of electrons in the 

energy interval ɛ, ɛ + ∆ɛ = density of states times probability for occupancy times energy interval:  

dN = D(ɛ) · f(ɛ,T) · dɛ 

 

Where for a free-electron model: 

2

1
2

3

22

2

2

1
)( 


 












m

d

dN
D

 

This in case of semiconductors translates to: 
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where,    mc*=conduction band effective mass,    mv*=valence band effective mass, and C= constant.

 

And considering that im most cases 

Assume CB occupancy <<1,     
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Probability of hole in VB,          1-
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Number of electrons in CB:  
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substitute y=(-c)/kBT 
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Which results is: 
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where Nc is the effective number density of accessible states at c  

 

Similarly the hole density, p is given by 
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In an intrinsic semiconductor the only source of electrons in the CB is thermal excitation from the VB 
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ni=intrinsic carrier density 
 

NB g/2 rather than g appears in the above equation because creation of an electron in the CB 
automatically generates a hole in the VB. 
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How does the Fermi energy change with T? 
 
 

From calculation of ni  and D(),     
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            When T=0 K or  mc*= mv*,F lies in the middle of the band gap 

 
 
Law of mass action 
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This is an important relationship because it shows that the product of carrier densities in a 
nondegenerate semiconductor at a given temperature is dependent only on the densities of 
states, ie on the effective masses, and on the energy gap. It holds for intrinsic as well as 
extrinsic material. It is referred to as the law of mass action. 

 
MODILITY AND CONDUCTIVITY 
 
It both electrons and holes are present, both contribute to the electrical conductivity 
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where  is the mobility. 
 
 

Remember that the free electron model is a good approximation for electrons in the CB or 
holes in the VB of a semiconductor, therefore the expression for electrical conductivity is 
used 
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or resistivity, 1/  

 



Dr. A. Sapelkin, Jan 2012 
 




2

*

ne

m
  

 

Mobilty, the drift velocity per unit electric field,  =|vD|/E, for electrons is defined as  
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ENERGY GAP OF SELECTED SEMICONDUCTORS  

 

 
 

 


