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SECTION A. Attempt answers to all questions.

A1 Write down the Time-Dependent Schrödinger Equation (TDSE) for a particle of
mass m in 3-D in a potential V (~r, t). State under what conditions for the potential
V (~r, t) the Time Independent Schrödinger Equation may be derived from the Time-
Dependent one. [3]

A2 State the Born interpretation for a normalised single particle wave function Ψ(x, t)
in one dimension. [2]

A3 What is meant by the Operator Postulate in Quantum Mechanics? [3]

A4 Write down the commutation relation of the position operator x̂ and the momentum
operator p̂x. Using the representation for the momentum operator, provide a proof.

[3]

A5 For the ground state wave function of the simple harmonic oscillator

Ψ0(x, 0) = N0 e
−ax2

calculate

i) the normalisation constant N0, [2]

ii) the expectation value 〈p̂x〉, [3]

iii) the expectation value 〈p̂2
x〉, [4]

iv) and the uncertainty ∆p, [2]

in terms of a and h̄. You may use the following standard integrals:

∫
+∞

−∞
e−bx2

dx =

√
π

b
,

∫
+∞

−∞
x2e−bx2

dx =
1

2b

√
π

b
.

A6 State Heisenberg’s position-momentum uncertainty relation(s) (in 3-D) in mathe-
matical form (no words required). [2]

A7 Sketch the wave functions ψ(x) and the probability densities |ψ(x)|2 for a particle
in the first excited state of both the infinite square well and the simple harmonic
oscillator potential. [4]
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A8 At time t = 0 a particle is prepared in the normalised quantum state:

Ψ(x, 0) =
1√
2
ψ0(x) −

1√
2
ψ1(x),

where ψn is a normalised energy eigenstate with energy eigenvalue En.

i) If the system is subsequently left undisturbed what is the wave function,
Ψ(x, t), at a later time t? [2]

ii) What are the possible results of an energy measurement at time t and their
respective probabilities? [2]

iii) Suppose a measurement yields one of the results listed in (ii); write down the
wave function immediately after the measurement. [1]

A9 Write down an expression for the orbital angular momentum operator L̂x in terms
of position and momentum operators ŷ, ẑ and p̂y, p̂z. Using this expression and
the commutation relations between position and momentum operators verify the
relation [L̂x, ŷ] = ih̄ẑ. [6]

A10 A Stern-Gerlach experiment is performed with a mono-energetic beam of silver
atoms. Draw a sketch of the experiment and state briefly what the apparatus is
designed to measure and how this is accomplished. [6]

i) Why does the silver atom provide information about a single electron? [3]

ii) A beam of spin-1 atoms is passed through the above apparatus. Show what
is observed and compare this with what is seen when the magnetic field is
switched off. [2]
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SECTION B. Answer two of the four questions in this section.

B1

(a) State the expansion theorem for a particle in a 1–dimensional potential where the
normalised eigenstates are ψn(x) with corresponding eigenvalues En. Give a formula
for the expansion coefficients cn. [4]
Hence, prove that 〈E〉 = 〈Ĥ〉 =

∑
n |cn|2En. [4]

(b) At t = 0 a particle in an infinite square well is prepared in a state corresponding to
the normalised top-hat wave function, Ψ(x, 0), illustrated:

For this infinite square well potential
the energy eigenstates are,
for n = 1, 2, . . .,

ψn(x) =
√

2

L
sin(nπ

L
x) for 0 ≤ x ≤ L

= 0 elsewhere

6
V = ∞

6
V = ∞

- x

N
?

Ψ(x, 0)

0 L
4

L
2

L

i) Calculate the normalisation constant N assuming it is real and positive. [2]

ii) Obtain an expression for the probability that the result of an energy measure-
ment is En, showing that it is proportional to 1/n2. Evaluate numerically the
probability to find the system in the groundstate. [6]

(c) Consider a particle of mass m moving in a potential V (x) with corresponding her-
mitian Hamiltonian operator Ĥ and energy eigenstates ψn(x).

i) If the system is in any of the eigenstates ψn show that the expression 〈[Ĥ, Ô]〉
vanishes for any operator Ô. [4]

ii) Now consider the special case V = cx2 where c is a real constant and Ô =
x̂p̂x. What relation between the expectation values of the kinetic and potential
energies do you find? [5]
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B2

In this question the states ψn are the orthonormal energy eigenstates, ψn(x) with n =
0, 1, 2, . . ., etc. of the Simple Harmonic Oscillator (SHO). You will not need explicit
expressions for these eigenstates, and you may use without proof the relations [â, â†] = 1,
âψn =

√
nψn−1 and â†ψn =

√
n+ 1ψn+1.

(a) The hamiltonian of the SHO is Ĥ = h̄ω0(â
†â+ 1

2
). Write down its eigenvalues En. [2]

(b) Prove the commutation relations
[
Ĥ, â

]
= −h̄ω0â and

[
Ĥ, â†

]
= +h̄ω0â

†. [6]

(c) Given the Heisenberg equation of motion for any operator Ô without explicit time-
dependence

d〈Ô〉
dt

=
i

h̄
〈[Ĥ, Ô]〉 ,

find the Heisenberg equations of motion for 〈â〉 and 〈â†〉 and solve them. [5]

(d) Consider the SHO in the state ψ = ψn. Using the fact that x̂ = 1√
2β

(â + â†) with

β =
√
mω0/h̄ find 〈x〉, 〈x2〉 and ∆x using operator formalism. You may use all

formulas and relations quoted in this question without proof. [6]

(e) Consider the SHO in its groundstate ψ0. Calculate 〈x4〉. [6]

B3

(a) Starting from the classical definition of orbital angular momentum, ~̂L, write down
in a cartesian coordinate system the components L̂x, L̂y, L̂z, of the corresponding
quantum mechanical operator. Hence show that they satisfy the following commu-
tation relation: [L̂x, L̂y] = ih̄L̂z [8]

(b) The following three normalised wave functions describe possible states of an electron
moving in three dimensions:

ψ1(x, y, z) = −N(x+ iy)e−r,

ψ2(x, y, z) = N(x− iy)e−r,

ψ3(x, y, z) =
√

2Nze−r

where r =
√
x2 + y2 + z2 and N is a normalisation constant. Verify that each is an

eigenfunction of L̂z and find the corresponding eigenvalue. [7]
The raising angular momentum operator is defined as L̂+ = L̂x + iL̂y. Show that

L̂+ψ2 = ch̄ψ3 and determine the constant c. [4]

(c) Describe the possible outcomes, including their probabilities, of measuring the z–
component of the orbital angular momentum of a particle in a state with wave
function:

ψ(x, y, z) = N(y + z)e−r .

[6]
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B4

(a) Write down the matrices representing the components of the spin angular momen-

tum operator ~̂S for a spin-1/2 particle. [2]
Write down the normalised eigenstates (eigenvectors), χ±, of Ŝz. [2]
Obtain the normalised eigenvectors, χ′

±, of the operator Ŝx and hence verify the
following relationships between the two different sets of basis states:

χ′
± =

1√
2

[χ+ ± χ−] and χ± =
1√
2

[
χ′

+ ± χ′
−

]

[6]

(b) Calculate the expectation values of Ŝy and Ŝ2
y for spin-1/2 particles in the state χ′

+.
Hence calculate the corresponding uncertainty ∆Sy. Hence, given that ∆Sy = ∆Sz,
obtain the product ∆Sy∆Sz. [6]
Write down the generalised Heisenberg uncertainty relation for the product ∆Sy∆Sz.
Hence, assuming the appropriate commutation relations for the spin operators, show
that the state χ′

+ corresponds to the state of minimum uncertainty allowed by the
Heisenberg relation. [4]

(c) An unpolarised beam of silver atoms enters from the left into a triple Stern-Gerlach
apparatus:

-

-

-
Discarded

beam

Sx

-

-
Discarded

beam

Sz

?Sx

Complete the diagram by labelling each beam emerging from each stage of the ex-
periment, including the beams emerging from the final Sx Stern-Gerlach apparatus,
with the appropriate normalised spin wave function and with the beam intensity
relative to that of the incoming beam. [5]
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