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SECTION A. Attempt answers to all questions.

A1 Write down the Time-Dependent Schrödinger Equation (TDSE) for a particle of
mass m in 3-D in a potential V (~r, t). State under what conditions for the potential
V (~r, t) the Time Independent Schrödinger Equation may be derived from the Time-
Dependent one. Write down the Time Independent Schrödinger Equation (TISE)
in 3-D. [5]

A2 State the Born interpretation for a normalised single particle wave function Ψ(x, t)
in one dimension. [2]

A3 What is meant by the Operator Postulate in Quantum Mechanics? [2]

A4 Prove the commutation relation [x̂, p̂x] = ih̄ by using the representation x̂ = x
and p̂x = −ih̄ ∂

∂x
and verifying that the commutation relation is satisfied for any

wavefunction Ψ(x). Obtain an expression for the commutator [x2, p̂x]. [6]

A5 The first excited state of the 1-D infinite square well is given by the wave function

Ψ2(x, 0) = A sin(
2π

L
x) for − L/2 ≤ x ≤ L/2

= 0 elsewhere

Determine the constant A. (You may assume sin2 θ = (1 − cos 2θ)/2) [4]

A6 Write down a general expression for the expectation value of a quantum mechanical
operator Â for a particle in the quantum state Ψ(x, t). [2]

A7 Write down a general expression (ie. definition) for the uncertainty ∆A in terms of
expectation values. [2]

A8 For a system in the state given by the wavefunction Ψ2(x, 0) of Question A5 find
the uncertainty ∆px of the momentum operator p̂x. [4]

A9 State Heisenberg’s position-momentum uncertainty relation(s) (in 3-D) in mathe-
matical form (no words required). [2]

A10 The eigenstates ψn(x) of a Hamiltonian are orthonormal. Write down this statement
in mathematical form. [2]

A11 Sketch the wave functions ψ(x) and the probability densities |ψ(x)|2 for a particle
in the first excited state of both the infinite square well and the simple harmonic
oscillator potential. [4]
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A12 At time t = 0 a particle is prepared in the normalised quantum state:

Ψ(x, 0) =
1

2
ψ0(x) +

√
3

2
ψ1(x),

where ψn is a normalised eigenstate with energy eigenvalue En.

i) If the system is subsequently left undisturbed what is the wave function,
Ψ(x, t), at a later time t? [2]

ii) What are the possible results of an energy measurement at time t and their
respective probabilities? [2]

iii) Suppose a measurement yields one of the results listed in (ii); write down the
wave function immediately after the measurement. [1]

A13 Write down expressions for the orbital angular momentum operator L̂x in terms of
position and momentum operators y, z and p̂y, p̂z. Using these verify the relation

[L̂x, y] = ih̄z. [6]

A14 Consider angular momentum operators Ĵx, Ĵy, Ĵz:

i) What are the allowed eigenvalues of ~̂J2 and Ĵz? [2]

ii) Explain why these two operators have simultaneous eigenstates. [2]
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SECTION B. Answer two of the four questions in this section.

B1

(a) At t = 0 a particle in an infinite square well is prepared in a state corresponding to
the normalised top-hat wave function, Ψ(x, 0), illustrated:

For this infinite square well potential
the energy eigenstates are,
for n = 1, 2, . . .,

ψn(x) =
√

2

L
sin(nπ

L
x) for 0 ≤ x ≤ L

= 0 elsewhere

6
V = ∞

6
V = ∞

- x

N
?

Ψ(x, 0)

0 L
4

3L
4

L

i) Calculate the normalisation constant N assuming it is real and positive. [3]

ii) Obtain an expression for the probability that the result of an energy mea-
surement is En, showing that it falls off as 1/n2 with increasing n. Evaluate
numerically the probability to find the system in the groundstate. [8]

iii) Show that for even n the probabilities are zero. Give a general reason for this
result. [3]

(b) By considering the quantity, ∫
+∞

−∞
ψ∗

i Ĥψj dx,

and assuming that the Hamiltonian is hermitian (ie. self-adjoint), prove that its
eigenvalues are real and that its eigenfunctions, ψn(x), corresponding to different
eigenvalues, are orthogonal. [7]

(c) For a particle in a one-dimensional symmetric potential, V (−x) = V (x), prove that
non-degerate eigenstates have definite parity. What parity does the groundstate of
any symmetric potential have? [4]
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B2

In this question the states ψn, ψi, ψj are the orthonormal energy eigenstates, ψn(x) with
n = 0, 1, 2, . . ., etc. of the Simple Harmonic Oscillator (SHO). You will not need explicit
expressions for these eigenstates, and you may use without proof the relations [â, â†] = 1,
âψn =

√
nψn−1 and â†ψn =

√
n+ 1ψn+1.

(a) The hamiltonian of the SHO is Ĥ = h̄ω0(â
†â+ 1

2
). Write down its eigenvalues En. [2]

(b) Using the commutation relation given above prove the commutation relations [6]

[
Ĥ, â

]
= −h̄ω0â and

[
Ĥ, â†

]
= h̄ω0â

† .

(c) Hence show that âψn and â†ψn have energy eigenvalues En − h̄ω0 provided that
n ≥ 1 and En + h̄ω0, respectively, where En is the eigenvalue of ψn. [5]

(d) Remember the matrix representing an operator Â has ij-th element

Aij =
∫
ψ∗

i Âψj dx .

Note: the matrices representing operators in the SHO problem are infinite-dimensional
- write down explicitly at least the first 5× 5 sub–matrix using dots to signify con-
tinuation of the pattern of entries.

(i) Show that the matrix Hij representing the Hamiltonian is a diagonal matrix,
and obtain its diagonal elements. [4]

(ii) Find the elements of the matrices representing the operators â† and â2. [8]
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B3

A particle is known to be in the normalised angular momentum eigenstate

ψ = R(r)
(

3

8π

) 1

2

sin θ e+iϕ , where
∫ ∞

0

r2|R(r)|2 dr = 1 .

a) Show that ψ is an eigenstate of the angular momentum operators L̂z = −ih̄ ∂
∂φ

and

~̂L2 = − h̄2

sin2 θ

(
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+ ∂2

∂ϕ2

)
. Find the corresponding eigenvalues. [7]

b) Show explicitly by integration that the expectation value for L̂x is zero where in

polar coordinates L̂x = ih̄
(
sinϕ ∂

∂θ
+ cot θ cosϕ ∂

∂ϕ

)
. [13]

c) What is the expectation value for a measurement of the angular momentum compo-
nent L̂α along a line in the z−x plane rotated by an angle α away from the z−axis,
where L̂α = L̂x sinα+ L̂z cosα. [5]

B4

a) i) A Stern-Gerlach experiment is performed with a mono-energetic beam of silver
atoms. Draw a sketch of the experiment and state briefly what the apparatus
is designed to measure and how this is accomplished, showing the outcome of
the experiment compared with classical expectations. [6]

ii) Now a beam of spin-j atoms is passed through the above aparatus. What is
observed? [2]

b) i) Write down the matrices representing the components of the spin angular mo-

mentum operator ~̂S for a spin-1/2 particle. Write down the eigenvectors (eigen-
states), χ±, of Ŝz. [4]

ii) Find the matrix Ŝθ = ~n · ~̂S corresponding to the spin angular momentum
operator projected in the direction given by the unit vector ~n = (sin θ, 0, cos θ).
Obtain the eigenvalues of Ŝθ and the normalised eigenstate χθ corresponding
to the positive eigenvalue of Ŝθ. Hence, verify the relation χθ = cos(θ/2)χ+ +
sin(θ/2)χ−. [8]
(Hint: you may use the identities sin θ = 2 sin(θ/2) cos(θ/2) and 1 − cos θ =
2 sin2(θ/2).)

iii) Calculate the expectation values of Ŝx and Ŝ2
x for spin-1/2 particles in the state

χθ. Hence calculate the corresponding uncertainty ∆Sx. [5]
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