
Chapter 9

Multi variate analysis

Consider a data sample Ω described by the set of variables x that is composed of two (or more) populations.
Often we are faced with the task of trying to identify or separate one sub-sample from the other (as these
are different classes or types of events). In practice it is often not possible to completely separate samples
of one class A from another class B as was seen in the case of likelihood fits to data. There are a number
of techniques that can be used in order to try and optimally identify or separate a sub-sample of data from
the whole, and some of these are described below in order of increasing complexity. Each of the techniques
described has its own benefits and dis-advantages, and the final choice of the “optimal” solution of how to
separate A and B can require subjective input from the analyst. In general this type of situation requires
the use of multi variate analysis (MVA).

The simplest approach is that of cutting on the data to improve the purity of a class of events, as described in
section 9.1. More advanced classifiers such as Bayesian classifiers, Fisher discriminants, neural networks, and
decision trees are subsequently discussed. The Fisher discriminant described in section 9.3 has the advantage
that the coefficients required to optimally separate two populations of events are determined analytically up
to an arbitrary scale factor. The Neural Network (section 9.4) and Decision Tree (section 9.5) algorithms
described here require a numerical optimisation to be performed. In this context the optimisation process is
called training, and having trained an algorithm with a set of data one has to validate the solution. Having
discussed several classifier algorithms, the concepts of Bagging and Boosting are described as variants on
the training process. In the following it is assumed that the data Ω contain only two populations of events.
These populations are either referred to as A and B, or as signal and background depending on the context.
It is possible to generalise these approaches to an arbitrary number of populations.

9.1 Cutting on variables

An intuitive way to try and separate two classes of events is to cut on the data to select interesting events
in a cleaner environment than exists in the whole data set. For example if you consider the case where the
data set Ω contains two types of events A and B that are partially overlapping. One possible solution to the
problem of separating A from B is to select the events that satisfy A \B. If C = A \B != ∅, then this will be
a pure sample of interesting events1. The pertinent questions are (i) what sacrifice has been made in order
to obtain C, and (ii) would it have been possible to reject less data and obtain a more optimal separation of
A and B so that we can further study a subset of the data?

What do we mean by making a cut on the data? Consider the data sample above Ω which contains two
classes of events: A and B, each of which is described by discriminating variables in n dimensions. If we
cut on the value of one or more of the dimensions, then we decide to retain an event ei that passes some

1Purity is defined as the fraction of signal (or interesting events) in a sample of data.

86

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 87

threshold

P (ei ∈ A) > 0 (9.1.1)

and would decide to discard an event if

P (ei /∈ A) is significant. (9.1.2)

There is an element of subjectivity in the second condition. We can think of a cut in some variable x as a
binary step function f(x) where in the case of a positive step we may write

f(x) = 1 for x > X0, (9.1.3)

f(x) = 0 elsewhere. (9.1.4)

and for a negative step, we change the inequality from > to <. In order to optimise the cut on x we need to
determine what it is we aim to achieve. If we assume our signal events are those of class A, then it follows
that we would like to retain as many events of type A as possible, while discarding as many events of type B
as possible. If A ∩ B = ∅, then it is possible to determine X0 by inspection of the distributions. If however
A ∩ B != ∅, we need to choose what we mean by the term optimally separating A and B.

The following lists some of the possible ways to determine X0 for optimal separation for a given test statistic.

1. If it is of paramount importance to obtain a pure sample of A with no contamination or dilution from
B, then we define X0 in such a way that satisfies C = A \ B != ∅ with as many events passing into C
as possible. Practically this usually is achieved at a significant cost in statistics and so will probably
not be a sensible criteria for optimisation for many of the situations encountered.

2. We can introduce the notion of the significance S of the signal content (amount of A) in Ω relative
to the background (amount of B). Then we can choose the value of X0 that results in the greatest
significance of signal. A common definition of significance is the test statistic

S =
NS√

NS + NB
, (9.1.5)

where NS is the number of signal events, and NB is the number of background events that pass a
given cut with cut-value x = X0. The motivation for this definition of significance is that we want to
compare any hint of a signal found to the statistical uncertainty on the number of events in the data.
The underlying logic is that we want to be able to minimise any incorrect claim of a signal that would
arise from statistical fluctuations in the background sample. As a result if we compute a numerical
value for S, we normally say that the expected significance for a given cut is Sσ, assuming that the
denominator corresponds to a Gaussian uncertainty on the total number of observed events. Other
test statistics used include purity and the signal to background ratio NS/NB.

3. If we are searching for an effect that is expected to be absent from the data, then we may want to
optimise in such a way that we minimise the uncertainty on the background estimation (or number of
events of type B that will remain in the sample), as this will dominate the uncertainty we obtain on
the possible presence of a signal, and hence on any limit we are able to place that rules out the effect
we seek.

The previous discussion with regard to making cuts has been based on a single dimension. In the case that
all relevant dimensions x in Ω are uncorrelated, it is sufficient (and efficient) to optimise the cut values X0

one dimension at a time. The values of X0 obtained through such a procedure would be optimal. The
more general situation encountered is when two or more dimension are correlated. For such cases one would

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 88

ideally like to simultaneously optimise the values of X0, however this is often not practical in terms of time
or resources2. A possible alternative to this is to iteratively optimise the values of X0 one dimension at a
time. If on subsequent iterations of the optimisation the value of X0 obtained for a given dimension does
not change appreciably, then you will have obtained the cut value for this dimension. In practice it may take
several iterations to achieve this when two or more dimensions are correlated.

Example: Given a sample of data with an expected number of 100 signal events over a background of
1000 events, what is the optimal cut value to maximise the significance S = NS/(

√
NS + NB)? In order to

determine this, we use 106 simulated data events for signal and background with known mean and widths
that correspond to that expected in the data. These distributions are shown in Figure 9.1, where the signal
and background are distributed according to Gaussian PDFs with means of 0.1 and 0.5 and widths of 0.3
and 0.4, respectively. It can be seen that in this case there is a trade off from allowing background to pass
the cuts, while retaining a reasonable signal efficiency. The figure also shows the cumulative probability
distributions for signal and background, which is equivalent to the efficiency of selecting events for a cut X0

that rejects higher values of x. The resulting significance distribution for this situation is shown in Figure 9.2
where one can see that X0 = 0.34 would provide optimal separation between signal and background using
this method. The significance has a maximum value of 3.8σ for this value of X0. On further inspection of
the figure one can see that for larger values of X0, there is a drop in significance arising from an increase in
background. For smaller values of X0 there is a drop in significance as signal is removed that would otherwise
contribute to a measurement.

x
-1 -0.5 0 0.5 1 1.5 2

Pr
ob

ab
ili

ty

0
0.005

0.01
0.015
0.02

0.025
0.03

0.035
0.04

x
-1 -0.5 0 0.5 1 1.5 2

Cu
m

ul
at

iv
e

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

Figure 9.1: (left) The distribution in x of simulated (dashed) signal and (solid) background events, and
(right) the cumulative probability distributions summing up from left-to-right for the cut based optimisation
example described in the text.

x
-1 -0.5 0 0.5 1 1.5 2

Si
gn

ifi
ca

nc
e

0
0.5

1
1.5

2
2.5

3
3.5

4

Figure 9.2: The significance computed as NS/(
√

NS + NB) for the cut based optimisation example described
in the text.

2The number of iterations required to simultaneously optimise m dimensions scales as the number of iterations for one
dimension raised to the power of m. This is referred to as the curse of dimensionality as originally noted by Bellman (1961).

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 89

9.1.1 Optimisation of cuts as a precursor to further analysis

It should be noted that if the aim of a cut based selection of events is to subsequently use those events with
a more complicated algorithm such as a fit based optimisation as discussed in section 8, or with an MVA
like those described in the remainder of this chapter, then it doesn’t make sense to optimise cut values as
described above. The end result of your experiment will be the result of analysis with that more sophisticated
technique - and so it is that which should be used to determine what is the optimal measurement to make.
If one does optimise with a cut based approach, and then performs a more sophisticated data analysis, the
end result will generally be less precise than if one applied a loose set of cuts, then performed the subsequent
data analysis. It is important to stress that control samples of data or simulated data should be used in the
optimisation process so that the result you obtain is not biased.

9.2 Bayesian classifier

The scenario of hypothesis comparison described in section 7.4 can be extended generally to a classification
problem, given some data Ω that can be tested against a set of classifications given by H , where the ith

classification is given by Hi. For each event ωj in the data set we can compute the probability P (ωj |Hi)
that the event is of the ith classification. The most probable hypothesis is given by

Pmax(ωj |Hi) = max [P (ωj |Hi)] , (9.2.1)

i.e. the largest value of P (ωj |Hi) for all i is used to identify the classification for an event. Such a classifier
is referred to as a Bayesian classifier.

Example: Consider the situation where one is interested in identifying three categories of event: (i) Inter-
esting I and in need of detailed study, (ii) possibly interesting PI at some level, and (iii) not interesting NI.
One can compute

PI = P (ωi|I), (9.2.2)

PPI = P (ωi|PI), (9.2.3)

PNI = P (ωi|NI). (9.2.4)

If the largest probability for event ωi is PI , one will classify the event as interesting and in need of further
study. Similarly if the largest probability is PPI or PNI , the event would be classified as possibly interesting or
not interesting, respectively. A more specific example utilising Bayesian classifiers is discussed in section ??.

9.3 Fisher discriminant

Fisher’s linear discriminant (or Fisher discriminant) is a linear combination of the variables x to form a
single classifier output O given by (Fisher, 1936)

O =
n∑

i=1

αixi + β, (9.3.1)

= α · x + β. (9.3.2)

The sum is over the number of dimensions n in the classification problem. In order to make use of Eq. (9.3.2)
in practice we need to determine the weight coefficients αi, or equivalently the weight vector α. The value
of β does not affect the separation between data types, it adjusts the overall central value of the resulting
Fisher distribution, and in the following discussion this parameter will be set to zero.

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 90

Given the data set Ω and the knowledge of which elements in Ω are of class A and which are of class B we
can compute the mean and variance of x for the two classes. These are µ

A,B
and σ2

A,B where the subscript

indicates the event type. Using Eq. (9.3.2) we can also compute the mean M and variance Σ2 of the Fisher
distributions for the two classes of data

MA,B = αT µA,B =
∑

i

αiµA,B, (9.3.3)

Σ2
A,B = αT σ2

A,Bα =
∑

i

∑

j

αiσij A,Bαj , (9.3.4)

where we now revert to matrix notation to avoid having to explicitly write out the summations involved.
In order to maximise the separation between A and B we want to maximise the difference between MA

and MB, while at the same time minimise the sum of the variances of the two output distributions. These
requirements are expressed in the ratio

J(α) =
[MA − MB]2

Σ2
A + Σ2

B

, (9.3.5)

where the squared sum of the mean values of the Fisher distribution for the two classes is

[MA − MB]2 =

[
n∑

i=1

αi(µA − µB)i

]

n∑

j=1

αj(µA − µB)j

 , (9.3.6)

=
n∑

i,j=1

αi(µA − µB)i(µA − µB)jαj , (9.3.7)

= αT Bα, (9.3.8)

where the matrix B is introduced to represent the separation between the classes of events based on mean
values. The the sum of the Fisher distribution variances is

Σ2
A + Σ2

B = αT σ2
Aα + αT σ2

Bα, (9.3.9)

= αT Wα, (9.3.10)

where the matrix W is the sum of covariance matrices within the classes. Thus, we find

J(α) =
αT Bα

αT Wα
. (9.3.11)

The optimal separation between classes A and B can be found by minimising J with respect to the weight
coefficients α, therefore by satisfying the condition

∂J(α)

∂α
= 0. (9.3.12)

One can show (for example see Cowan (1998)) that the maximum separation is found when

α ∝ W−1(µ
A
− µ

B
), (9.3.13)

so we are able to compute the weights α if we are able to determine the mean values µA,B, and invert the
matrix W . As the coefficients are determined up to some proportionality, we don’t have a unique solution

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 91

for the set of weights, but have a family of related solutions. This method implicitly assumes that the matrix
W can be inverted. If W is singular, then one either has to change the input dimensions to produce a
non-singular W matrix, or alternatively use a different classification method.

If we so wish, we can extend the form of Eq. (9.3.2) by scaling or offsetting the input data to lie within
a specified range. Furthermore it is possible to scale or offset the computed O as desired if you want to
relocate the mean value or change the range over which the classifier outputs are computed for the data. On
doing this the separation between types A and B will remain optimal as defined by the Fisher algorithm.

Example: Consider the situation where we have a data sample comprising two types of events: signal (S)
and background (B), each described in two dimensions that are independent: x and y. We want to compute
a set of Fisher discriminant coefficients α to separate out S from B so that we can further analyse a clean
sample of the signal events. From the data sample, we are able to compute

µS =

(
0.1
0.2

)
, and σS =

(
0.3 0.0
0.0 0.2

)
, (9.3.14)

for the signal, and

µB =

(
1.0
1.2

)
, and σB =

(
0.4 0.0
0.0 0.5

)
, (9.3.15)

for the background. Here σA and σB contain the standard deviations of the independent variables x and y,
and are not covariance matrices. The distributions of the signal and background data are shown in Figure 9.3.
There are regions of the signal that are background free, and similarly there are regions of the background
data that are signal free. The objective is to obtain an optimal separation between the two classes of events.

x
-1 -0.5 0 0.5 1 1.5 2 2.5

N
um

be
r o

f e
nt

rie
s

0

20

40

60

80

100

y
-0.5 0 0.5 1 1.5 2 2.5 3

N
um

be
r o

f e
nt

rie
s

0
20
40
60
80

100
120
140

Figure 9.3: Distributions of (left) x and (right) y for (solid) signal and (dashed) background events for the
example described in the text.

Given this information we can compute the difference in mean values of S and B as

(µS − µB) =

(
−0.9
−1.0

)
, (9.3.16)

and W is given by3

W =

(
0.25 0
0 0.29

)
, (9.3.17)

3The original σ matrices provided in this example contain the standard deviations of the data, and the discriminating
variables x and y are un-correlated. Hence the individual standard deviations need to be squared to obtain the covariance
matrix, and using this one can then construct W . This step is not required if one starts from the two covariance matrices.

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 92

where the off-diagonal terms are zero as x and y are uncorrelated for both signal and background. From
Eq. (9.3.13) we can determine the weight vector up to some arbitrary scale factor to be

α =

(
−3.6
−3.45

)
. (9.3.18)

Figure 9.4 shows the output fisher distribution O obtained using the weights computed for this example. The
separation between signal and background distributions in terms of O is better than the separation either
with x or with y when one compares with the distributions in Figure 9.3. The signal distribution appears
on the right hand side of the figure as a result of the convention adopted in Eq. (9.3.13) where background
means are subtracted from signal ones.

O
-1.5 -1 -0.5 0 0.5

N
um

be
r o

f e
nt

rie
s

0

20

40

60

80

100

120

Figure 9.4: The Fisher discriminant output distribution O for (solid) signal and (dashed) background events
for the example described in the text.

9.3.1 Choice of input variables

Often we have a choice of input variables or dimensions that we want to use to separate between classes of
events. Some common sense should be used when doing this, as for example if you introduce a dimension
where A and B are almost completely overlapping with similar distributions, that dimension will have
essentially no weight in the final Fisher discriminant that you compute. In turn you may decide that it is
not worth including that variable in your classifier.

A corollary of the method is that if the mean value of the distribution of events in a given dimension is the
same for both classes A and B, but the shapes of the two distributions are rather different, by definition
the corresponding weight αi will be zero, [this follows from Eq. (9.3.13)]. In such cases it makes sense to
transform the variable somehow in order to make sure that the mean values of the distributions for A and
B are different. One possible way to do this if you have with a common mean value for types A and B,
where events are distributed differently for the two types, is to fold the data about the mean value and use
the resulting distributions as an input to the Fisher discriminant. These distributions will not be symmetric
about a common mean for A, and the variable will in turn have a contribution to the separation between
the two classes of event.

9.4 Artificial neural networks

There are many variants on the concept of artificial neural networks. These are all built upon complex
structures assembled from individual perceptrons, see section 9.4.1. The type of neural network that is most
commonly used in physics applications is that of a multi-layer perceptron (MLP) (see section 9.4.2). The

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 93

MLP is an ensemble of layers of perceptrons used in order to try and optimally separate classes of events.
Typically there are n dimensions input to the network and only a single output, however it is also possible to
configure a network with multiple outputs. Only single output MLPs are discussed here. An important, and
often overlooked aspect to the use of neural networks is that of validation. After describing the MLP, there
is a discussion on training methods in section 9.4.3, and the issue of validation is discussed in section 9.4.4.
More information on this topic can be found in a number of books including (Hastie Tibshirani and Friedman,
2009; MacKay, 2011; Rojas, 1996).

9.4.1 Perceptrons

The fundamental building block of a neural network is the perceptron. The perceptron is the algorithmic
analogy of a neuron. There are n inputs to the perceptron, these provide an impulse for the perceptron to
react to. The perceptron has a pre-defined action which in turn performs some function and finally gives a
response in the form of an output (see Figure 9.5). The simplest type of perceptron is a binary threshold
perceptron. This takes an n dimensional input in the form of an event ei described by the vector xi. Given
xi, the perceptron is used to compute some response O using a so-called activation function y. If yi is
above threshold for a given event the response is one, and if it is below threshold the response is zero. The
binary threshold perceptron algorithm is

yi = w · xi + b,

O = 1 if yi > 0,

= 0 otherwise. (9.4.1)

The vector w corresponds to the set of weights used to separate classes of events from each other, and b is a
constant offset used to tune the binary perceptron’s threshold value. If we think about what the perceptron
is actually doing, one can see that we are defining a plane in an n-dimensional space as w · xi + b, and then
accepting all events that occupy space on one side of this plane. The events on the other side of the plane
are rejected. In order to optimally select interesting events using a single perceptron we need to determine
the parameters w and b. So for each perceptron there are n + 1 weights (or n weights if you set b to zero)
to determine. Training is discussed in more detail in sections 9.4.3 and 9.4.4.

y Output

1x
2x
3x

.

..

nx

Figure 9.5: A single perceptron with n input values, an activation function y, and a single output.

The n-dimensional binary threshold perceptron is equivalent to the n-dimensional cut based event selection
described in section 9.1 applied to a Fisher discriminant. Both algorithms are making a cut in the problem
space, and one recognises the similarity between the activation function w · xi + b, and Eq. (9.3.2).

The function given in Eq. (9.4.1) is called the activation function of the binary threshold perceptron. In
practice we are not restricted to a single type of activation function, and we are able to try other options.
The following types of activation function are commonly used in perceptrons

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 94

• n-dimensional binary threshold function given by Eq. (9.4.1).

• A sigmoid (or logistic) function given by

y =
1

1 + ew·xi+β
, (9.4.2)

which varies smoothly with output values in the range of 0 to +1.

• The hyperbolic tangent: y = tanh(w · xi) which varies smoothly with output values in the range −1
to +1.

• The radial function: y = e−w·xi which varies smoothly between 0 and 1.

Figure 9.6 shows example distributions of the aforementioned activation functions. By using a smoothly
varying activation function, as opposed to the binary threshold function described previously, we are able to
finely tune the decision as to whether an event is signal like or not in terms of a continuous variable. Another
way of thinking about this is that it is possible to consider an event to be a little like signal or background,
without having to make a hard judgment as to whether the event is definitely signal or background. This
can be useful when sample distributions overlap in data as is often the case. One can think of the use of
a continuous activation function as a blurred cut in parameter space for events that lie on the boundary
between classification as type A or type B, compared to the hard cut that would be imposed by the binary
threshold function. This is equivalent to the probabilistic treatment of events in a likelihood fit.

x
-1 -0.5 0 0.5 1

y(
x)

0

0.2

0.4

0.6

0.8

1

x
-1 -0.5 0 0.5 1

y(
x)

0

0.2

0.4

0.6

0.8

1

x
-1 -0.5 0 0.5 1

y(
x)

-1

-0.5

0

0.5

1

x
0 0.2 0.4 0.6 0.8 1

y(
x)

0

0.2

0.4

0.6

0.8

1

Figure 9.6: Example distributions of the (top left) binary, (top right) sigmoid, (bottom left) hyperbolic
tangent, and (bottom right) radial activation functions.

9.4.2 Multi-layer perceptron

A neural network is a combination of perceptrons, each with n inputs. It is possible to have a single
perceptron to govern the output of the network, which would combine the decisions made by each of the
input nodes into a single output. Usually the output would be a continuous number between either zero and

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 95

one or −1 and +1 to indicate if an event ei was signal like (O = +1) or not (O = −1 or 0 depending on the
activation function).

In general a multi-layer perceptron is more complicated than this picture, and there will be a single input
layer connected to the output node via one or more hidden layers. Figure 9.7 shows an MLP with n input
nodes, one hidden layer of n nodes, connecting to a single output node. Each of the input nodes has n
inputs, and the output of each of these nodes is transmitted to all of the nodes in the next layer. As each
perceptron has at least n weight parameters to determine, if there are several hidden layers and n is large,
the number of parameters to determine rapidly increases. For m perceptrons, in an input layer, each with an
n dimensional input, feeding o perceptrons in a hidden layer, and a single output perceptron, then number
of parameters to determine in order to compute the output of the MLP is: n×m for the input layer, m× o
for the hidden layer, and o for the output node. So there would be a total of (n + o) × m + o parameters
to determine. This assumes that the activation function for each node depends only on factors of w · xi. So
if one has ten inputs (n = 10), to ten nodes in the input layer (m = 10), with a hidden layer of ten nodes
(o = 10), and a single output layer, the number of weights to compute is 210. Such a network would be
described as having a 10 : 10 : 1 configuration in shorthand. Even for a 5 : 5 : 1 MLP with ten inputs, one
would have 80 parameters to determine. Such flexibility in the configuration of a network means that a lot
of care needs to be taken to ensure that the trained set of optimal weights is not fine tuned on fluctuations in
training samples. A method of determining the weight parameters is discussed in more detail in section 9.4.3,
and section 9.4.4 discusses the importance and main issues of validating the computed weights.

1x

2x

3x

nx

.

.

.
O

Figure 9.7: A multi-layer perceptron with n input values, one hidden layer of n nodes, and a single output.

9.4.3 Training an MLP

The process of determining the weight parameters for neural network is called training. There are several
steps involved in training a MLP which are as follows

1. Define an algorithm to assign an error to a given set of weights.

2. Define the procedure for terminating training, based on the computed error, or other information.

3. Guess an initial set of weights to test the classification process.

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 96

4. Evaluate the error defined in step (1) for a given set of data containing (preferably) equal numbers of
target types for signal and background.

5. Determine a new set of weights based on mis-classified events.

6. Iterate the last two steps until the convergence criteria defined in step (2) has been reached.

7. Validate the weights obtained via this procedure (see section 9.4.4).

The case of a single perceptron

The error assignment for a single perceptron is based on the ability to correctly classify if an event ei is of
the appropriate type. For example signal events should be classified as signal, and background events should
be classified as background.

If the signal classification (class A) is type= 1, and the background classification (class B) is assigned type= 0
for an event ei, then we can define an error on the output of a perceptron εi as

εi =
1

2
(ti − yi)

2, (9.4.3)

where ti is the true target type for the event, and yi is the output of the perceptron. The value of yi

computed for an event will depend on the set of weight vectors used in the computation, and on the form
of the activation function chosen for the perceptron. The misclassification of the event is given by ti − yi,
however we want to be able to sum up error terms, and so it is conventional to square this difference to
maintain a positive definite quantity. Similarly the factor of 1/2 is also conventional.

If there are N events in the data sample Ω, then the total error from a single perceptron will be given by

E =
N∑

i=1

εi (9.4.4)

=
1

2

N∑

i=1

(ti − yi)
2. (9.4.5)

Having computed the error on the event classification it is desirable to be able to compute a new set of
weight vectors that are closer to the optimal set than the initial guess. If the initial weight vector is wm,
then we want to compute a new weight vector

wm+1 = wm + ∆w, (9.4.6)

such that wm+1 is closer to the minimum of the total error function than wm. If we consider the E versus
w parameter space, then we can estimate the derivative of E with respect to w as

∆E

∆w
) ∂E

∂w
, (9.4.7)

so

∆E) ∆w
∂E

∂w
. (9.4.8)

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 97

If we choose ∆w such that it depends on the rate of change of E with respect to the weight vector we can
ensure that we take a small step toward the minimum if

∆w = −α
∂E

∂w
, (9.4.9)

where α is a small positive parameter called the learning rate. Thus the total change in error ∆E given by

∆E) −α

(
∂E

∂w

)2

, (9.4.10)

which is always a negative quantity by construction. The functional form of E is given by Eq. (9.4.5), so once
the activation function is defined, hence the w dependence of E has been chosen, it is possible to compute
∆w and hence ∆E for a data sample. This method of iteratively computing weight vectors is often called
the gradient descent method or the ∆ Rule, and was previously encountered when discussing optimisation
of fit model parameters in section 8.1.1.

Back propagation: training a MLP

When one moves from a single perceptron to a MLP, the error assignment algorithm is more complicated.
One has to assign some importance to different contributions to the final network output, and where necessary
to work back from the output layer to the input layer to modify the choice of weights. Back propagation is
a generalisation of the gradient descent algorithm discussed above. The weight determination for the input
layer of perceptrons is based on Eq. (9.4.6), where once again the objective is to minimise the total error
rate E. Each perceptron in the network contributes an error rate corresponding to Eq. (9.4.5).

As with the case of training a single perceptron, having determined the error for an ensemble of events, given
an initial assumed set of weights, one can iterate and estimate a new set of weights. This process follows
an analogous procedure to that outlined above. This method is a generalisation of the ∆ Rule, so again
it works on the concept of error minimisation through gradient descent. Detailed descriptions of the back
propagation method can be found in a number of texts, for example see MacKay (2011) and Rojas (1996).

9.4.4 Training validation for a neural network

Training validation is discussed as a sub-section in its own right to highlight the importance of this topic. It
is not sufficient to assume that a computed set of weights for a network is correct. Having obtained what is
assumed to be a reasonable set of weights, it is necessary to perform cross checks to ensure that the solution
is not tailored to statistical fluctuations in the data used to compute them. There are many local minima
that could be found through the minimisation of E with respect to the weight parameters − so how can one
determine if the minimum obtained is really the global minimum, or if it is one of the local minima?

The problem arises as the MLP with a given set of weights w has a total classification error E as computed
for some training data sample Ωtrain. This training sample is a reference where target types of each event,
either as class A or as class B are known beyond doubt. In practice we will want to apply the MLP to
a classification problem using a different data sample comprising real data Ωdata where the target type is
not certain. How do we know that the MLP will behave reasonably when applied to Ωdata? If we have
sufficient training data then we can construct a statistically distinct set Ωvalidate that is equivalent to Ωtrain

in all respects, but satisfies Ωtrain ∩ Ωvalidate = ∅. If the MLP gives the same total error for both Ωtrain and
Ωvalidate, then it is reasonable to expect the MLP to behave as expected when we apply it to Ωdata. Hence
to ensure that we have not fine tuned the weights of the MLP, we need to check the total error E obtained
from the network using Ωtrain, and then compute the total error E′ obtained when the network is applied
to Ωvalidate. When ∂E/∂w has reached a minimum, and both E and E − E′ are sufficiently small, we can

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 98

assume that the weights computed for the MLP are not fine tuned and that the training has converged.
Hence we can use the network with confidence on a real data set. In order to determine if E is sufficiently
small we have to set an error threshold δ by hand.

Typically we use either pure reference data samples that resemble the classes we are trying to separate, or
Monte Carlo simulated data for Ωtrain and Ωvalidate. While the number of events of class A or B used in
training can be different, it is generally better to use equal numbers of both types of events in training.

If we reflect upon the large number of weight parameters that have to be determined when we train a neural
network, the next logical question is “How much data do we need to use when training a given network”.
There has been some discussion on this in the literature, for example it has been noted that for a MLP with
a single hidden layer, with W weight parameters that need determining and an error threshold of δ, then you
should use more than W/δ events in the training sample (Baum and Haussler, 1989). For more complicated
networks this number is multiplied by a factor of ln(N/δ), where N is the number of nodes in the network.

Now we return to the issue of local versus global minima. One can try re-training a neural network, starting
with different weight sets to check if the same set of weights is converged upon via the training-validation
process. If the same weights are obtained from several different trials, then one has some confidence that the
solution obtained may be a global minimum. Another possible test would be to try a different minimisation
algorithm, and see if the same solution is obtained.

9.5 Decision trees

The concept of a decision tree (DT) is derived from that of an optimal cut based selection of events. As
with the previously described methods, the aim of the DT is to separate classes of events with as small a
misclassification error as possible. If one has n dimensions describing classes A and B, then the root node
of a DT uses the optimal set of dimensions required to separate A and B with some cut on xi. In general,
the resulting sub-samples of events will contain both classes, so it is possible to consider further subdivision
using an optimal combination of dimensions. This iterative process can be continued until such time as one
is able to classify A and B with a satisfactory error rate. Figure 9.8 shows a schematic of a DT. Each of the
nodes in the tree will split the data set into an A-like and a B-like part. As a result, the lowest level of the
tree will contain a number of A-like and B-like parts. In other words, this layer contains sub-sets of Ω that
are either mostly A or mostly B, each with a small misclassification error. As the optimal dimensions are
used at each step to separate A and B it is quite possible that some dimensions will be used more than once
while others are never used to classify events. The decision process at each node is equivalent to that of a
cut based algorithm. The additional flexibility of a DT of many nodes compared to a cut based optimisation
means that the algorithm has more flexibility (hence power) to separate A from B. The output of a single
DT is a binary separation between signal (1) and background (0).

The algorithm used used to separate data into A and B-like parts of the data is discussed in section 9.1,
where the number of dimensions used for a given node is that required to provide optimal separation (i.e.
not all dimensions have to be used to make the decisions at all of the branching points in a tree). As a
result there are between 1 and n weight parameters to determine per node in the tree. A corollary of this is
that a decision tree with m nodes will have between m and n × m weight parameters to determine. While
the weight parameter scaling issues of DTs are not as severe as those for a neural network, it follows that
the issues discussed above with regard to training validation of weights for neural networks are also serious
issues for DTs. Two techniques that can be used to improve the stability of the trained DTs, with respect
to statistical fluctuations in the training sample, are boosting (section 9.5.1) and bagging (section 9.5.2). In
general to avoid over-training a DT one can compute an ensemble of trees with minor variations between
them (sometimes referred to as a forest), and use the aggregate classification of an event. In this way one
can construct a distribution of outputs with value in the range [0, 1].

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 99

Root Node

Ω

A AB B

A-Like E
vents B-Like Events

Figure 9.8: A DT with a root node above two layers of nodes that further sub-divide the data sample into
pockets of A and B-like events.

9.5.1 Boosting

The aim of training a DT with a boosting algorithm (referred to as a boosted DT or BDT) is to successively
re-weight events in favour of those that are mis-classified from one iteration of the training process to the
next. The logic is that the subsequent training iterations will be focused on correctly classifying those events
that were previously mis-classified. When boosting a DT one typically re-weights events with a factor α,
defined in terms of the error rate ε. Having re-weighted events, the total weight of the data sample is
renormalised so that the sum of event weights used is constant for all iterations. A number of possible
re-weighting factors exist, one of these variants is

α = log

(
1 − ε

ε

)
, (9.5.1)

which is referred to as the AdaBoost.M1 algorithm, and is discussed at length in Hastie Tibshirani and
Friedman (2009).

9.5.2 Bagging

Bagging is an alternate (or additional) method for improving the stability of a DT to that of boosting. This
method involves sampling sub-sets of data from Ω, and then performing many different training cycles for
the DT one for each sub sample of data. The ultimate set of weights used will be the mean value obtained
for the ensemble of DTs. If the data sample Ω is not sufficient to provide statistically distinct sub-sets of
data one can oversample Ω, and use each event many times for different training cycles. This re-sampling
method reduces the susceptibility of a DT to statistical fluctuations.

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 100

9.6 Choosing an MVA technique

There are a number of factors that should be considered before choosing a particular MVA to separate
between classes of events. Some of these factors are logical and based on taking the best classifier to do the
job, other factors are subjective and are based on the understanding of the analyst, or indeed the use case
of the MVA. If a classifier will be used to provide an end decision on how probable it is that a given element
is of class A or B, then your decision to use that classifier might differ from that made if you intended to
use the classifier in a fit based minimisation problem, or indeed as an input to another MVA algorithm.

When assessing the logical input required to understand what is the best classifier we want to understand
how well class A is separated from class B in our data. There are number of ways to do this, however it can
often be instructive to compute curve of the efficiency of class A vs class B. In this case we would consider
the best classifier to be the one that has the maximum efficiency of one class while minimising the efficiency
of the other.

Consider the example from an experiment where we have signal and background classes for A and B. There
are many input variables that distinguish between the classes. These variables are the n dimensions that
will be used to classify the data. The single output variable from a classifier is then the quantitative infor-
mation that we have to decide if one algorithm is better than another at separating signal from background.
Figure 9.9 shows the distribution of signal versus background efficiency for these hypothetical test data. The
better the event classification, the closer it will pass to the bottom right hand corner. An extreme example
of this is the case of being able to identify a sample of pure signal, where the curve will pass through the
point (1, 0). Often the rejection rate versus error rate, is plotted when choosing which MVA to use for a
problem; such a distribution is known as a receiver operating characteristic.

Signal Efficiency
0 0.2 0.4 0.6 0.8 1

Ba
ck

gr
ou

nd
 E

ffi
ci

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Better

Worse

Figure 9.9: The distribution of signal versus background efficiency for a classifier output from an experiment.
The better the event classification, the closer the curve will pass to the bottom right hand corner.

One can compute a measure of the separation between types A and B by adopting the definition of separation
used for the Fisher discriminant in Eq. (9.3.5) and computing the ratio of the difference of the means (Mi)
of the two output distributions and the variances or RMS values (Σi),

S =
(MA − MB)2

Σ2
A + Σ2

B

. (9.6.1)

CHAPTER 9. SDA (PHY328) : DR ADRIAN BEVAN (A.J.BEVAN@QMUL.AC.UK). 101

The greater the value of S for a given classification algorithm, the more discriminating power that has. If
the distributions of one or both of the event types as classified by an algorithm are rather different to that
of a Gaussian, then this definition of separation may not be very appropriate.

The fact that an algorithm gives optimal separation for the specified set of discriminating variables used,
does not necessarily mean that this is the most optimal solution to the problem. In order to ascertain this
we would have to compare classifiers for all possible combinations of input discriminating variables and all
possible classifier algorithms. Where it is impractical to perform tests with all of the combinations, one
should endeavour to test as many as is reasonable before converging upon a candidate classifier to use in
the analysis of data. Having identified such a candidate, the next step in the process is to consider any
subjective factors as discussed in the following that may influence the decision of an algorithm or number of
dimensions to use to classify the data.

When it comes to addressing the subjective input required to understand which classifier is the best, we
should remember that there is no magic recipe to help us. However there are a number of factors that should
always be adhered to:

1. Simplicity can be a key factor in determining which classifier is used. The clarity in understanding
what is happening to your data in order for a given event to be classified as one type or another, or
indeed to be able to easily explain what you are doing to a colleague should not be underestimated.

2. Only use a method that you understand. If you use algorithms that you do not fully understand, you
may find that you have a better separation between classes, however you run a risk of having over-
trained the algorithm without realising it, or falling foul of some pathological behaviour. The only way
to limit such a risk to acceptable levels is to adhere to an abstinence policy of only using algorithms
that you understand.

3. Where appropriate, always ensure that sufficient data are used to train and validate an algorithm.
There is a necessary trade off between the desire to use as much data as possible as an input to an
algorithm, and ensuring that you can validate that your resulting classifier does not suffer from over-
training or some other pathology when checked against a statistically independent sample. If you fail
to validate a classifier that requires training, then you should not be tempted to use that classifier for
anything beyond an educational exercise.

4. Think carefully about the shape of the output classifier in the context of how you wish to use it. For
example if you are using this as an input to a fit based optimisation:

• Are you able to easily parameterise the target shapes of the classifier?

• If the classifier is a highly irregular, or peaked shape, is there a 1 : 1 mapping that you can apply
in order to retain the separation power of the classifier, but obtain a distribution that can be
parameterised or used as an input variable in a fit?

The quantitative and subjective inputs discussed above all play a role when we want to understand which
classifier is the best for solving our problem. The discussion in this section is relevant for any MVA technique,
not just the algorithms that have been described in detail here. Each problem that you are faced with will
have its own unique set of quantitative and subjective factors that must be considered in order to choose
which classifier is the best for a given problem. If in doubt, there is little lost in opting for the simplest
algorithm. The cost in doing so is usually some loss of precision in a measurement, however sometimes this
can be considered acceptable if the gain in clarity is a subjective factor that carries significant weight for
your particular problem.

