
Chapter 8

Fitting

8.1 Optimisation

The process of fitting a sample of data D(x) containing N entries involves iterative comparison of data
and a theoretical model P(x, p) assumed to describe that data1. The x are discriminating variables to be

used in the fit taking the value xi for the ith event, and p are the parameters of the theoretical model.
The parameters are allowed to vary in the fit to data, i.e. each iteration of the optimisation process uses
a different value for p, in order improve the compatibility of data and model. This process requires the
definition of a test statistic T that is used to quantify how well the model and data agree and to then vary p
in such a way as to try and obtain an improved model description of the data. The test statistics described
in this section are χ2 and likelihood based. In both cases we numerically minimise the test statistic summed
over the data. So in order to perform a fit to data we perform an optimisation process in the parameter
space p which involves minimising the sum

S =
N∑

i=1

T [D(xi),P(x, p)]. (8.1.1)

In order to converge on a solution one has to start with an initial estimate of the parameter set to evaluate
S. Having done this one then determines a new estimates of p following a pre-defined rule, at each step
evaluating the corresponding S. After making an initial set of estimates of the parameter set, it is normally
possible for the algorithm to determine in which direction a more optimal set lies. Having done this, the
algorithm will perform another search starting from a point p′ that is closer to the assumed minimum than
the previous one. This process is repeated until such time as the optimisation algorithm has a sufficiently
small step size given by

δ =
∣∣p − p′

∣∣ . (8.1.2)

When δ is smaller than some minimum step size or distance η in the parameter space, the optimisation is
said to have converged on a minimum value p

min
. Having found a minimum p

min
the final step is for the

algorithm to determine the corresponding uncertainty δp
min

, which depends on the test statistic that is being
minimised.

General issues with numerical optimisation procedures is that they do not always distinguish between local
and global minima, and they do not always converge to a minimum. If a minimum is found, such that δ < η,

1Depending on the method we use, we are able to fit the data on an event-by-event basis, or by binning the data in finite
intervals.
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the algorithm considers this point in space to be the minimum. Further tests must be made in order to
determine if one has found a local or global minimum. The procedure to validate that a minimum is global
involves scanning the start parameters for the fit, and repeating the minimisation. It is not always practical
to perform such a parameter scan, however there are certain circumstances where it is absolutely necessary,
for example fits with large numbers of parameters where there are large correlations between parameters.

One thing to be borne in mind is that the number of computational steps required in order to converge to a
local or global minimum will depend on how close the initial values of p are to the values corresponding to
the minimum and on the step size used to iterate p. It is possible that a fit may not converge to a minimum
if the values of p are far from the values at a minimum. There are many ways to minimise a quantity, each
have their own pitfalls, and only two examples are described in the following to illustrate the process of
optimisation. In practice one normally uses a more sophisticated approach to determine the optimal set (or
fitted) parameters p.

8.1.1 Gradient descent method

Consider an m dimensional parameter set that is to be fit to some model given by P for some data sample.
The sum S used to compare the data to the model is given by Eq. (8.1.1). Starting from a point in the
parameter space p, one can numerically compute an estimate for the gradient

g(p) =
∂S

∂p
, (8.1.3)

from one (or more) neighbouring point(s) p + ∆p. In practice we can only determine an approximation of
the gradient

g(p) " ∆S

∆p
. (8.1.4)

Having determined the gradient at the point p
j
, one can use this to estimate a new point p

j+1
some small

distance ε from p
j

p
j+1

= p
j
+ ε · g(p). (8.1.5)

In general, one expects p
j+1

to be a better estimate of the true minimum than p
j
. One can continue iterating

on this process, each time estimating a new parameter set until such time as the estimated gradient is close
enough to zero to be considered the minimum. In general the condition for having determined the minimum
is

∆S

∆p
= 0, (8.1.6)

and the value of S either side of the stationary point found in the parameter space can be used to distinguish
between possible maxima, minima, and points of inflection. As this search is numerical, sometimes the new
estimate p

j+1
can have a value that is further from the minimum than p

j
. This can occur as the step size

ε is a pre-determined parameter for the search and may simply be too large. If subsequent iterations fail
to re-converge on a minimum, this optimisation procedure can fail to converge. For complicated models,
failure to converge may not be uncommon, and as such one should take care to choose a reasonable starting
parameter set p

0
.
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8.1.2 Parameter scan

In certain situations it may not be possible to optimise or fit the values of all parameters that a model
depends upon, or one may want to understand the change in S as a function of a particular parameter
without resorting to an optimisation algorithm. In such scenarios one can perform a parameter scan. This
involves stepping through the values of a parameter of interest p from some minimum value through to some
maximum value. The minimum and maximum are chosen such that the best fit value that one is attempting
to determine is bound by these limits. At each point between pmin and pmax the sum S is computed. Hence
one can plot S as a function of p in order to determine the optimal value of the parameter via such a scan. If
the model depends on more than one parameter then the ancillary parameters should be optimised at each
value of p used in the scan. An example of this approach is given in section 8.2.1.

8.2 The least squares or χ2 fit

In order to perform a χ2 fit, one typically bins data such that there are at least 5 to 10 events that
contribute to each bin. As a result the data are generally not binned in samples that are of equal size in
the discriminating variable space. The test statistic used for this type of fit is a χ2 constructed between the
data Di and theoretical model describing the data Pi i.e.

χ2 =
N∑

i=1

(
Di − Pi

σ(Di)

)2

, (8.2.1)

[see Eq. (4.5.2)] where the sum is over the number of bins. The parameter (p) and discriminating variable
(x) dependence have been suppressed here, and are implied. The quantity σ(Di) is the uncertainty on the
datum Di, which in the case of an event yield is given by the corresponding Poisson error on that yield. As
by definition the χ2 distribution is normalised by the uncertainty from data, the 1σ error on a result is given
when the χ2 changes by one unit from the minimum value χ2

min . Once you have a data sample to fit to
the only remaining issue is the choice of model P . Some commonly used PDFs are discussed in appendix B,
in addition to those already encountered earlier in the book. The test statistic in Eq. (8.2.1) is sometimes
referred to as a least squares statistic. In this book the terminology χ2 fit is generally used in the context
of an arbitrary model P describing the data, where a numerical minimisation is performed to obtain the
optimal set of fit parameters p, and least squares optimisation is used in the context of problems that can
be solved by analytic means (see section 8.3). This distinction is artificial and introduced here to distinguish
between the two ways of solving a problem using this type of test statistic.

8.2.1 Example: determining the average of a set of measurements

Consider the situation where one has several measurements of the value of some quantity S as shown in
Table 8.1. This quantity is the measure of difference between matter and anti-matter decaying from an
initial state called a B meson into a final state involving so-called charmonium particles and a strange
particle (a kaon). The data are taken from a journal article written by collaborators working on a high-
energy physics experiment called BABAR (Aubert et al., 2009). The parameter S has to be zero for matter
and antimatter to behave in the same way for these measurements.

Based on this information what is the average value of S? While it is possible to compute a weighted average
using the formalism outlined in section 5.4.1, it is also valid to consider using a fit or scan to determine
the average value of a set of measurements. The advantage of using a scan-based approach to compute the
average is the retention of more information concerning the observable we are trying to measure. Instead
of a single number to represent the uncertainty, one has a curve that can be used to determine confidence
levels of arbitrary significance.
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Table 8.1: Individual measurements of a parameter S as described in the text. The uncertainties σS consid-
ered are statistical only.

S 0.662 0.625 0.897 0.614 0.925 0.694 0.601
σS 0.039 0.091 0.100 0.160 0.160 0.061 0.239

Each column in the table corresponds to an event i that contributes to a χ2 sum. As we are trying to
determine the most optimal value of S, the model is given by the assumed value of that parameter, in other
words we perform a parameter scan of S, from Smin to Smax, and for each point in this range we can compute
the χ2 sum

χ2 =
7∑

i=1

(
Si − S

σSi

)2

, (8.2.2)

where Si and σSi
are the central values and uncertainties for the ith event. This is shown in Figure 8.1. The

minimum value of the χ2 is at S = 0.690, and the corresponding error (how far one moves away from the
minimum value of S in order to obtain a change in χ2 of one from the minimum value) is 0.028; thus the
average value of the data in the table using this method is S = 0.690 ± 0.028. For comparison, the average
value obtained in the original reference is S = 0.687 ± 0.028. Note that the method used for the average
computed here is not as sophisticated as that in Aubert et al. (2009), which explains the small difference
obtained between these two results. The results of the method outlined here and the one used in the original
reference give essentially the same average given the precision of this set of measurements.
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Figure 8.1: The χ2 parameter scan in terms of S for the data given in Table 8.1.

It turns out that the parameter S is a function of a more fundamental quantity, an angle β. Given that
S = sin(2β) one can repeat the parameter scan in terms of the angle β by replacing S in Eq. (8.2.2) by
sin(2β). For each assumed value of β in [0, 360]◦ one can compute sin(2β) and hence determine the χ2 sum.
The corresponding average value obtained for β in the first quadrant is (21.8 ± 1.1)◦.
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If instead of performing a scan in S or β, we chose to use a minimisation algorithm, we would have arrived
at the same results as obtained from Figure 8.1. However in performing just a fit to the data, we would
have obtained only a central value, and uncertainty estimate for the average value of the observable. By
performing both the fit, and the parameter scan we have an estimate of the optimal value of the observable,
and a visual representation of the behaviour of the test statistic in the vicinity of this value. This enables
us to verify that the test statistic is smoothly varying (i.e. well behaved) in the vicinity of the minimum.

Having obtained the optimal result from a minimisation process, it is possible to compute the probability
of obtaining that result given the number of degrees of freedom, using P (χ2, ν) from Eq. (4.5.1). This is
an indicator of how well the model agrees with data and is often referred to as the goodness of fit, or GOF
(see section 4.5), and it is something that should be considered when validating a result. For example in the
case described here we have obtained the average result S = 0.690 ± 0.028. The sum of χ2 deviations from
the average for this data (often abbreviated as the χ2) is χ2 = 7.83. There are n − 1 degrees of freedom,
as there are n = 7 data used in the evaluation of the χ2, and the total sum is constrained by the number
of data. Thus there are 6 degrees of freedom (ν = 6). The χ2 probability for this situation is given by
P (χ2, ν) = 0.25, which means that the result has a reasonable outcome.

If we had obtained a result where χ2 ∼ 0, then the uncertainties on each of the individual data would have
been overestimated. This would indicate that one has probably inflated or over estimated the errors in order
to improve the level of agreement of the individual measurements, or alternatively that the data are highly
correlated, and can not be combined without accounting for the correlation. Similarly had we obtained
χ2/ν >> 1, then we would conclude that the data are not in good agreement, as again one would find that
P (χ2, ν) " 0. In either of these extremes we have to try to understand if it is meaningful to combine the
results (this is best done before attempting any such combination where possible). If there is a particular
piece (or several pieces) of data that dominates the χ2 then studying that input in more detail would be in
order. If on inspection it turned out that the data for a given event is suspect, for example the measurement
was wrong, then that data point may be ignored. If however that experiment appeared to be reasonable,
then it is not appropriate to discard the data as the result may simply be a statistical out lier.

8.3 Linear least-squares fit

The procedure adopted in section 8.2 can be used to study general situations where the theoretical model
described by P is arbitrary as illustrated through the previous example of determining average values of S
and β. Often one can take an analytical approach to solve a given problem. One situation that often arises
is the case of comparing data to the model Pi = axi + b, where the uncertainty on each point σ(yi) is some
constant value denoted by σ. In this case we can write Eq. (8.2.1) as

χ2 =
N∑

i=1

(
yi − axi − b

σ(yi)

)2

=
1

σ2

N∑

i=1

(yi − axi − b)2 , (8.3.1)

where we have replaced Di by yi and made the appropriate substitution for Pi. The task at hand now is to
minimise χ2 with respect to both a and b in order to determine the optimal values of the slope and offset of
our model. In order to do this we differentiate χ2 with respect to a and b, and simultaneously solve for values
that correspond to the point where both derivatives are zero2. In the simplified case where the uncertainties
on the yi are all some constant value, we can remove the constant 1/σ2 from the problem. If we consider

2In general one can use the second derivative or numerical means to establish the nature of the turning point, and ensure
one has located a minimum.
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the derivative with respect to a first, this is just

σ2 ∂χ2

∂a
=

N∑

i=1

∂

∂a
(yi − axi − b)2 , (8.3.2)

=
N∑

i=1

−2xi(yi − axi − b), (8.3.3)

= −2
N∑

i=1

xiyi − ax2
i − bxi, (8.3.4)

= −2N(xy − ax2 − bx). (8.3.5)

Similarly for the derivative of χ2 with respect to b one obtains

σ2 ∂χ2

∂b
= −2N(y − ax − b). (8.3.6)

As the optimal solution exists for

∂χ2

∂a
= 0, and

∂χ2

∂b
= 0, (8.3.7)

we need to simultaneously solve (ignoring constant multipliers)

xy − ax2 − bx = 0, (8.3.8)

y − ax − b = 0, (8.3.9)

for a and b. The results of this are

a =
xy − bx

x2
=

xy − x y

x2 − x2
, (8.3.10)

b = y − ax. (8.3.11)

Hence, for the situation where we want to determine the coefficients of a straight line fit to data, where the
data yi have equal uncertainties, and the abscissa values xi are precisely known, we can analytically solve
for the slope and intercept parameters without having to perform a numerical optimisation.

Using the combination of errors procedure outlined in chapter 5 on Eqns (8.3.10) and (8.3.11) it can be
shown, for example see Barlow (1989), that

σ2(a) =
σ2

N(x2 − x2)
(8.3.12)

σ2(b) =
σ2x2

N(x2 − x2)
. (8.3.13)

In general the least squares method can be written in matrix form as

χ2 = ∆T V −1∆, (8.3.14)

where V is the covariance matrix and ∆ is a column matrix of difference terms of the form xi − f(xi, p),
and p are parameters of the model f . From this general form it is possible to derive the weighted averaging
procedure introduced in chapter 5. The use of least squares regression is discussed in more detail for example
in the books by Barlow (1989); Cowan (1998); Davidson (2003); James (2007).
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8.4 Maximum-likelihood fit

It is possible to define a likelihood function L that uses the PDFs P to describe the distribution of discrim-
inating variables x in data. As the functions P are normalised so that the total probability of an event is
unity, we can write the likelihood for an event as

Li = P(xi). (8.4.1)

The quantity P(xi) is the probability assigned by the model for the ith event. If the event xi is certainly
signal, then the part of P(xi) corresponding to signal will be one. Similarly if the event is definitely not signal
then the part of P(xi) corresponding to signal will be zero. One can make similar statements for background,
or indeed any other type or class of event described by the model P . Usually the probability assigned to
an event for a given component j is between these two extreme values, so in general 0 ≤ Pj(xi) ≤ 1. In
order to express these possibilities mathematically we need to consider the situation when there are distinct
components in the model. For example, if there are m components in a model, then the likelihood for an
event i is given by a sum over these m components

Li =
m∑

j=1

fjPj(xj), (8.4.2)

where fj are the fractions of the different components. For a single event the fj are interpreted as the
probability that an event is of type j. Thus in order to conserve probability we require3

m∑

j=1

fj = 1. (8.4.3)

So far we have only considered a single event that may be one of m different possible types. In reality there
is a limited amount of information that can be gleamed from a single event and we are usually faced with
interpreting results from data samples of many events. As each event is independent, the likelihood for a
data set containing N events is the product of the likelihoods for the individual events

L =
N∏

i=1

Li, (8.4.4)

=
N∏

i=1

m∑

j=1

fjPj(xi). (8.4.5)

It can be troublesome to numerically compute L for large samples of data. The test statistic that is usually
optimised is

− lnL = − ln
N∏

i=1

Li, (8.4.6)

= − ln
N∏

i=1

m∑

j=1

fjPj(xi), (8.4.7)

= −
N∑

i=1

ln
m∑

j=1

fjPj(xi), (8.4.8)

which is easier to compute numerically and follows the form of Eq. (8.1.1). All that remains is to define the
fit model by choosing the Pj distributions. A number of PDFs that can be used to construct models are
discussed in chapter 4 and appendix B.

3It is possible to use the normalisation constraint of Eq. (8.4.3) to reduce the total number of parameters by one, resulting

in the final component fraction fm = 1 −

m−1
P

i=1

fj .
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8.4.1 Extended maximum-likelihood fits

If one is interested in determining event yields nj of a set of categories, instead of fractions, then the Poisson
nature of those yields needs to be taken into account. In such circumstances the likelihood function given
in Eq. (8.4.5) is modified by a Poisson term that depends on the total fitted event yield n′ =

∑
nj , where

nj is the number of fitted events of type j, to give (Barlow, 1990)

L =
e−n′

N !

N∏

i=1

m∑

j=1

njPj(xi), (8.4.9)

The total number of fitted events n′ does not have to exactly match the total number of events. The fit
has the ability to converge on some minimum value close to, but not necessarily satisfying n′ = N . More
details on the usage of this form of likelihood fit can be found in Refs (Barlow, 1990; Cowan, 1998). If the
event yields nj are observables of primary interest then an extended maximum-likelihood fit provides a more
convenient approach than the original form.

8.4.2 Interpreting the result of a likelihood fit

In general, as with the case of least squares, one can analytically solve for the optimal value of a parameter
for a given problem by requiring

∂L
∂p

= 0, (8.4.10)

and subsequently using the second derivative or numerical means to ensure that the stationary point is a
maximum. The maximum will provide the most likely value of p which is denoted here by p0. In general the
variance on p is given by the integral equation

(∆p)2 =

∫
(p − p0)2Ldp∫

Ldp
, (8.4.11)

which follows directly from Eq. (4.1.2).

In practice it is often cumbersome to analytically compute the optimal value and variance for a parameter
for a complicated fit model. In such a scenario one must resort to numerical means of evaluating the best
fit value. On computing the value of − lnL for a data set with a given assumed parameter set we are able
to compute a number that is related to the probability of the agreement of the data to the assumed model
with the assumed parameters. After completing this initial step, one performs an optimisation of − lnL
as described in section 8.1. As a natural part of the optimisation process the fit will converge on some
optimal result denoted by − lnL0, that corresponds to a minimum minimum value of − lnL. This is the
most probable result that our algorithm has been able to identify. This is a single point in parameter space,
and tells us nothing about the uncertainty on that point in space in terms of the parameters. Furthermore,
if there is more than one parameter in the parameter set, then one has to worry about how correlated those
parameters might be with each other, and that in turn can complicate the determination of the uncertainty
on a parameter. For such a scenario the problem has to be solved in a multidimensional space.

If we consider an observable p, then we expect the uncertainty on p to be distributed according to a Gaussian
for large data samples. Hence, for large samples we expect

L(p, µ, σ) =
1

σ
√

2π
e−(p−µ)2/2σ2

, (8.4.12)
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with some mean value µ and standard deviation σ providing an estimate of the parameter p and its uncer-
tainty. The negative-log-likelihood is given by

− lnL(p, µ, σ) = − ln

(
1

σ
√

2π

)
+

(p − µ)2

2σ2
, (8.4.13)

where the first term is a constant and the second term is the equation of a parabola. When p−µ corresponds
to a 1σ Gaussian uncertainty the second term in Eq. (8.4.13) reduces to a factor of one half, and when p = µ,
the second term vanishes. So a change of one half in − lnL from the minimum value obtained corresponds to
a change in p of 1σ. In this limit of large statistics uncertainties are Gaussian by virtue of Eq. (8.4.12). This
result encapsulates Wilks’ theorem (Wilks, 1937) which states in the limit of large statistics the distribution
of −2 lnL equates to a χ2 distribution with δ degrees of freedom, where δ is the difference in the number
of parameters for models used in computing some likelihood ratio. That theorem is only valid for large
statistics as a term of order 1/

√
n is neglected in the approximation made by Wilks.

In the limit of small statistics, or where the − lnL distribution is not parabolic about the minimum value it is
not appropriate to attribute a change of one half to represent a ±1σ boundary and Monte Carlo simulations
should be used to determine the interval corresponding to the uncertainty on a parameter. In practice if the
− lnL distribution is almost parabolic we assume that it is valid to invoke the theorem of Wilks.

8.4.3 Adding constraints

If one is performing a fit to data given some model θ, where external information is available that may help
constrain one or more parameters in the model, then it is possible to include a penalty term to the test
statistic being optimised. For example in the case of a χ2 fit, where some parameter p has been previously
measured as pmeas ± σp, one could simply add a term to the χ2 being minimised in the fit. This additional
term would take the form

χ2
penalty =

(p − pmeas)2

σ2
p

. (8.4.14)

The quantity χ2
penalty would be computed for each iteration of the minimisation process and added to the

usual χ2 sum in order to incorporate external knowledge. Additional information can be included in a
likelihood fit by extending the model to simultaneously fit the external information in an analogous way. It
is also possible to implement constraint equations in a fit using Lagrange multipliers, for example see Edwards
(1992); Silvia and Skilling (2008).

8.4.4 Fit bias and checking for self consistency

The range of fit models that one may want to apply to data varies from simple, where there are a few
parameters to determine from data, to extremely complicated, where there may be tens, hundreds, or even
more parameters to determine. In all cases the optimisation process used is not guaranteed to work properly,
and one should take care to validate that a fit result obtained is sensible.

If one fits a sample of data, and obtains some parameter pfitted = p0±σp0 , it is reasonable to ask if pfitted is a
good representation of the true value of the parameter p. In general the test statistic used in the optimisation
has an intrinsic bias, dependent on the sample size. In order to test for fit bias one can generate, and fit
to, an ensemble of simulated data. The distributions of fitted values p0 and σp0 obtained can be used to
evaluate if the fit being performed is biased or not.

If the simulation is an accurate representation of the measurement being performed, then one will obtain a
set of fitted parameters pfitted for each simulated measurement in the ensemble. These should be distributed
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with a mean value corresponding to that used to generate the ensemble, pinput, and a spread representative
of the uncertainty obtained from the fit. In general one can plot the so-called ‘pull’ distribution

P =
pfitted − pinput

σp
, (8.4.15)

which should be centred on zero for an unbiased measurement, with a width of one if the fit correctly
extracts the uncertainty on p from data. A common reason why one might obtain a width of the distribution
in Eq. (8.4.15) differing from one is if the simulated experiments do not allow for Poisson fluctuations that
are inherent in fitting for event yields.

An additional consistency check that can be made for a maximum likelihood fit is to verify that the value of
− lnL obtained from fitting data is consistent with the distribution of − lnL obtained from an ensemble of
simulated measurements. If there is a disagreement, this could indicate that there is a problem with either
the fit to the data, or with the simulation used. In general the absolute value of − lnL is dominated by the
number of events used in the fit to data and corresponds, on average, to a sum over all events of the first
term in Eq. (8.4.13) for fits to large samples of data.

8.5 Combination of results

The most transparent way of combining results from several different measurements of a single observable is
to construct a fit model that encompasses all necessary parameters to describe all of the data used to extract
information on the observable. Having done this, the data are fit using that model. This procedure can
be used for situations that vary from different measurements having many parameters in common between
them, to ones where only the observable of interest is common. In reality this approach can be complicated,
and the fit validations required to understand the fit bias and performance may be impractical. If this is the
case, the alternative discussed below may be useful.

Consider the situation when there are several different determinations of some parameter, each with a given
likelihood or χ2 distribution as a function of that parameter. Such a situation is not uncommon with
complicated experiments as there can be more than one way to measure and observable. It is possible to
combine the likelihood or χ2 distributions of the different measurements directly. For two χ2 distributions,
the total χ2, χ2

TOT is the sum of the individual contributions as:

χ2
TOT = χ2

1 + χ2
2, (8.5.1)

which follows from Eq. (8.2.1). If the estimates of the parameter are correlated with each other then one
needs to resort to using the general form of the χ2 given by Eq. 8.3.14. With regard to combination of two
likelihoods L1 and L2, as each is a representation of the probability for something to happen, the combined
likelihood is just the product L1L2. It follows that, as we usually optimise − lnL, the optimal value for some
parameter derived from a combination of two likelihood functions is given by − lnL1 − lnL2. The minimum
value of this combination corresponds to the best fit value of the parameter(s) under study, and the ±1σ
uncertainties can be obtained as discussed in Section 8.4.2. Figure 8.2 shows the result of combining two
likelihood distributions in this way.
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Figure 8.2: The − ln(L/L0) curves obtained from (solid) two different determinations of a parameter p, with
the (dashed) combined distribution shown.


