
Chapter 5

Uncertainty and errors

5.1 The nature of errors

We now have enough background information to revisit the topic of quantifying the uncertainty on a single,
or set, of measurement(s). The concepts developed in this chapter are central to how scientific method is able
to test theory against experimental observations. In practice the words error and uncertainty are often used
interchangeably when describing how well we are able to constrain or determine the value of an observable.

5.1.1 Central limit theorem

If one takes N random samples of a distribution of data that describes some variable x, where each sample
is independent and has a mean value µi and variance σ2

i , then the sum of the samples will have a mean value
M and variance V where

M =
N∑

i=1

µi, (5.1.1)

V =
N∑

i=1

σ2
i . (5.1.2)

As N tends to infinity, the distribution of the sum of the samples tends to a Gaussian distribution. This is
called the central limit theorem (CLT) and it implies that independent measurements of some observable
will have uncertainties that are Gaussian in nature. Indeed empirical tests of this theorem show that this
is indeed the case. As shown for example in Barlow (1989), Eqns (5.1.1) and (5.1.2) can be verified by
expanding the right hand sides of those equations and substituting in Eqns (3.2.1) and (3.3.1), respectively.

5.1.2 The Gaussian nature of statistical uncertainty

Statistical uncertainties are Gaussian in nature for sufficiently large samples of data. This result can be
obtained both empirically and via the CLT. The ramification of this result will be discussed in more detail
in the rest of this section, however before looking at this in detail, we briefly return to our expression of
a measurement x̂ ± σ̂, where x̂ is our best estimate of the true mean value, and σ̂ is the estimate of the
uncertainty on x̂ which is given by the standard deviation of the result. We interpret this result as saying
that if we were to repeat the measurement, there is a certain probability that the second measurement would
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be within ±1σ of the original result. This probability is given by

P =

+1bσ∫

−1bσ

G(x; x̂, σ̂)dx, (5.1.3)

where G(x; x̂, σ̂) is a Gaussian PDF with mean x̂ and width σ̂. This probability is approximately 68.3%,
and is sometimes referred to as the coverage of the interval (x− x̂) ∈ [−1σ, +1σ]. Similarly we can consider
how often we would expect the second result to be within ±nσ̂ of the original experiment. These results are
summarised in Table 5.1 for n = 1, 2, . . . 5.

Table 5.1: The Gaussian probability for some repeat measurement of an observable x to lie between +nσ
and −nσ of the original measurement for values of n up to n = 5, shown to a precision of 4 decimal places.

±nσ̂ coverage (%)
1 68.2689
2 95.4500
3 99.7300
4 99.9937
5 99.9999

If we perform a measurement on some observable O, the result of which is given by O1 = x̂1 ± σ̂1, then at
some later time we repeat the measurement with the same experimental conditions we would expect that by
definition, we can find the new measurement O2 = x̂2 ± σ̂2 which can have a central value x̂2 that is more
than σ1 away from x̂1. If we perform an infinite number of subsequent measurements of the observable O we
would expect that 68.2689% of the time, the results will fall between x̂1− σ̂1 and x̂1 + σ̂1, and thus 31.7311%
of the time the results will fall outside of this range. Implicitly when doing this we assume that x̂1 is a
sufficiently good estimate of the true mean value. By construction we are expecting that when we repeat a
measurement quite a lot of the time our new result will be slightly different than our original one. Normally
we consider two results to be compatible if a subsequent measurement is within ±3σ of the original on the
basis that we normally make many measurements. Therefore it is not unreasonable to expect that less than
one in a hundred results has a large (≥ ±3σ) deviation from our expectations. Much more than this level of
discrepancy and we would want to investigate the compatibility of the two results more rigorously in order
to verify that any differences can be attributed to statistical variations in the measurements.

5.1.3 Repeating measurements with a more precise experiment

Often in science, we attempt to repeat the measurement of an observable in order to obtain a more stringent
constraint on that observable than obtained by any previous experiment. An example of this would be to
measure a physical observable, such as the mass of an electron, with greater precision. When doing so,
in addition to preparing or constructing a more robust experiment, it may be necessary to increase the
statistical power of the experiment. By ‘increase the statistical power’ we mean, increase the number of data
entries recorded by the repeat experiment.

So the question arises, what would constitute a minimum increase in the number of data entries or events
recorded at an experiment in order to justify the time and expense of building a new one. To answer this
question, you have to understand how much better your new experiment would be relative to the old one(s)
and offset the cost and time required to construct a new experiment and repeat the measurement against the
benefit obtained in terms of increased precision. The increase in precision expected can be determined from
the definition of standard deviation given in Eq. (3.3.10). The statistical precision of a new experiment with
ten times the data of an old one would have an error

√
10 ∼ 3.2 times smaller than the old experiment. So if

the statistical uncertainty dominated the precision of the measurement you wanted to make, then it would be
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worth considering making the new experiment. Much less than this factor of increase in precision, and one
could spend a lot of time working on a new measurement that provides only a very marginal improvement
over the previous result. If one were to build an experiment that could collect 100 times the data of any
existing experiment, then that new endeavour would be able to make a measurement 10 times better than
any existing one. In general we follow the rule that statistical precision will scale with the square-root of the
number of data, or

√
N .

If a great deal of care is taken in the design and construction of the new experiment, then it may be possible
to obtain a better than

√
N reduction in the error. But that would require the new experiment to be

significantly better than the old one (for example better energy or momentum resolution, better calibration,
etc.). If there is no such improvement and someone claims to be able to do better than the

√
N scaling in

uncertainty by collecting more data with an equivalent method to that used in an existing experiment, then
one should seriously question how this new measurement can ‘beat statistics’. It is not possible to ‘beat
statistics’, hence this scaling rule can be used to make, and check the validity of, extrapolations from an old
experiment to a new one.

5.2 Combination of errors

In order to understand how to combine uncertainties we can first consider the case of a function dependent
on two measured inputs: x and y each with with mean values x and y, and errors σx and σy . We can Taylor
expand this function f(x, y) about x = x, and x = y as

f(x, y) = f(x, y) +
∂f

∂x
(x − x) +

∂f

∂y
(y − y) + . . . , (5.2.1)

where in the following we ignore higher order terms. If we now consider how to compute the variance of
some quantity f as described in section 3.3, this is given by

V (f) = (f − f)2, (5.2.2)

where f = f(x, y). Thus, it follows that

V (f) =

(
∂f

∂x
(x − x) +

∂f

∂y
(y − y)

)2

, (5.2.3)

=

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
σxy (5.2.4)

where we have replaced (x − x)2, (y − y)2, and (x − x)(y − y) by σ2
x, σ2

y , the covariance σxy, and neglected
higher order terms in the last step. Equation (5.2.4) can be expressed in matrix form as

V (f) =
(

∂f
∂x , ∂f

∂y

)( σ2
x σxy

σxy σ2
y

)( ∂f
∂x
∂f
∂y

)

, (5.2.5)

where the covariance matrix V (Eq. 3.6.4) is evident as the middle term in the equation.

If x and y are independent variables, the third term in Eq. (5.2.4) vanishes, and we obtain a general expression
for combining uncertainties for functions of two independent variables

σ2
f =

(
∂f
∂x

)2
σ2

x +
(

∂f
∂y

)2
σ2

y. (5.2.6)
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The previous discussion can be generalised in order to compute the uncertainty on some function with an
arbitrary number of input variables f = f(x, y, z, . . .) where the observables ui = x, y, z, . . . are independent,
resulting in

σ2
f =

(
∂f
∂x

)2
σ2

x +
(

∂f
∂y

)2
σ2

y +
(

∂f
∂z

)2
σ2

z + . . . , (5.2.7)

=
∑

i

(
∂f
∂ui

)2
σ2

ui
, (5.2.8)

and the sum is over the observables.

So given the variances and values of the variables ui, as well as the form of the differentiable functional f it
is possible to determine the variance of f . This general form can be used in order to determine some familiar
results, as shown in the following. We shall return to the scenario of correlated observables in section 5.2.4.

5.2.1 Functions of one variable

If the function f has a form that depends only on one observable x, for example

f = ax + b (5.2.9)

we can use Eq. (5.2.8), where here the sum is over a single term (i = 1), and u1 = x, to determine how the
error on x is related to the error on f . This is given by

σf =

√(
∂f
∂x

)2
σ2

x (5.2.10)

= aσx. (5.2.11)

So for this function, the error on f , given by σf , is a times the error on x. This result is independent of
any offset of the measured observable. This result can be cross-checked by starting from the definition of
variance given in Eq. (3.3.1) and replacing x with ax + b as follows

V (x) =
1

n

n∑

i=1

(axi + b − ax + b)2, (5.2.12)

= 〈(ax + b)2〉 − 〈axi + b〉2, (5.2.13)

= 〈a2x2 + 2abx + b2〉 − a2〈x〉2 − 2ab〈x〉 − b2, (5.2.14)

= a2〈x2〉 + 2ab〈x〉 + b2 − a2〈x〉2 − 2ab〈x〉 − b2, (5.2.15)

= a2〈x2〉 − a2〈x〉2, (5.2.16)
√

V (x) = aσx = σf . (5.2.17)

In both cases we obtain the same result, as required.

5.2.2 Functions of two variables

Now consider the function f = x + y, where we have measured the mean and standard deviation of both
x and y, and want to compute the standard deviation on their sum. We can use the general formula of
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Eq. (5.2.8) to determine how to do this, hence

σ2
f =

(
∂f
∂x

)2
σ2

x +
(

∂f
∂y

)2
σ2

y, (5.2.18)

= σ2
x + σ2

y , (5.2.19)

σf =
√

σ2
x + σ2

y . (5.2.20)

Here we find the result that the variance on f is the sum of variances on x and y. We usually say that errors
combined in this way have been added in quadrature. This result is independent of the signs of x and
y in f , so it is valid for f = ±x ± y. By following a very similar derivation we are able to show that the
relative error on products or ratio of x and y is also given by the sum in quadrature of the errors on x and
y, however this is a task left for the reader.

5.2.3 Functions involving powers of x

The final example considered here is that of the function f = xn. If we have determined the value and
uncertainty on x, we can use the general formula of Eq. (5.2.8) once again to determine the corresponding
error on f as

σ2
f =

(
∂f
∂x

)2
σ2

x, (5.2.21)

σf = nxn−1σx. (5.2.22)

Here we find a relationship between the uncertainty on f and both the value and uncertainty on x.

5.2.4 Correlations revisited

The concept of correlation between variables was introduced in section 3.6.2. Just as the determination
of one variable may depend on the value of another correlated variable, the error on the measurement of
one observable or parameter may depend on the value of another correlated observable or parameter. It is
necessary to understand in detail the covariance between correlated variables for such a problem in order
to be able to correctly compute errors, or combining repeated measurements of an observable that may be
correlated. Returning to Eq. (5.2.4), we now see that if the covariance between two variables is non-zero
that the last term plays an important role in understanding the uncertainty on the combination.

The result in Eq. (5.2.4) can be generalised for the case where one has an N dimensional problem. Correlated
variables will have terms depending on the covariance of the pairs, and uncorrelated terms will take the form
of Eq. (5.2.8). This generalised result is

σ2
f =

∑

i,j

∂f
∂ui

∂f
∂uj

σuiuj
, (5.2.23)

=
∑

i

(
∂f
∂ui

)2
σ2

ui
+
∑

i,j, i"=j

∂f
∂ui

∂f
∂uj

σuiuj
, (5.2.24)

where the first sum corresponds to the uncorrelated error computation, and the second sum corresponds to
the correlated error component for some pair of variables ui and uj . The indices i and j are over the N
dimensions of the problem. The uncorrelated parts form the diagonal of a matrix, and the correlated parts
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are off diagonal terms. Equation (5.2.24) can be expressed in matrix form as

σ2
f =

(
∂f
∂u1

, ∂f
∂u2

, . . . , ∂f
∂un

)






σ2
u1

σu1u2

σu1u2 σ2
u2

...
σ2

un











∂f
∂u1
∂f
∂u2

...
∂f

∂un






, (5.2.25)

where we see the (symmetric) covariance matrix as the middle term of the right hand side of Eq. (5.2.25).
This can be re-written in a compact form as

σ2
f = ∆T V ∆, (5.2.26)

where ∆ is a column matrix of partial derivatives of f with respect to the ui and V is the n × n covariance
matrix. Thus if one knows the uncertainties on ui, covariances between pairs of variables, and is also able
to determine the partial derivatives it is possible to compute the error on f via the appropriate matrix
multiplication. The error propagation formalism described here is applied to the problem of tracking a
moving object, and determining the error on its trajectory in section ??.

5.2.5 Correlated and uncorrelated uncertainties

The preceding discussion raised the issue that some or all of the uncertainties we are interested in may be
correlated with each other. If we have some observable x that has a number of sources of uncertainty, all of
which are uncorrelated, then we are able to combine the uncertainties in quadrature in order to obtain the
total uncertainty on x using a generalisation of the result given in Eq. (5.2.20).

If however, the uncertainties on x were correlated, it would be wrong to assume that we can add them in
quadrature. Instead correlated uncertainties should be added coherently (or linearly) in order to obtain the
total uncertainty. This follows from Eq. (5.2.24) as can be seen from the following: Given f = x + y, where
we have determined σx = σy , and ρx,y = 1, then it follows that the total error on f is given by

σf =
√

σ2
x + σ2

y + 2ρx,yσxσy , (5.2.27)

= 2σx = 2σy. (5.2.28)

Often a measurement will have sources of uncertainty that are both correlated and uncorrelated. In such
cases we add the correlated errors linearly, and the uncorrelated parts in quadrature. Finally we can consider
calculating the total uncertainty by combining the correlated and uncorrelated sums in quadrature, however
this implicitly assumes that the uncertainties are all Gaussian in nature. This may not always be the case
for systematic uncertainties discussed in section 5.5.

5.3 Binomial error

It is useful at this point to revisit the binomial probability distribution (section 4.2) in order to discuss the
binomial error and its uses. Let us consider the case where we are trying to measure the efficiency of a
detector. Our experiment has two states: the first where we detect what we want to measure, and a second
when we don’t detect a signal. Knowing in advance that we want to measure the detector efficiency we
design our experiment with sufficient redundancy so as to be able to compute this. Then we embark on a
detailed study to accumulate data over a period of time in order to estimate the detector efficiency. This
efficiency is simply the fraction of detected events normalised by the total number of events measured by a
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reference system. If our detector is particularly good and only fails to detect one in a thousand events, then
the efficiency is ε = 0.999. To convince ourselves that we understand the detector efficiency fully we must
also determine what the error on ε is. We know that the efficiency is

ε =
nd

n
, (5.3.1)

where nd is the number of detected events, and n is the total number of trials. The detection of events is a
binomial quantity, so the variance is given by Eq. (4.2.4) and is nε(1− ε), where here p = ε. From Eq. (5.2.8)
it follows that the uncertainty on ε is given by

σε =

√
ε(1 − ε)

n
. (5.3.2)

This uncertainty is sometimes referred to as the binomial error on the efficiency. A practical way to
measure the efficiency of a detector for particles that would pass through it is to sandwich that between two
other ‘trigger’ devices, and correlate the detection of some event in both triggers with the presence or absence
of an event being detected in the device under study. The underlying reasoning is that if the two triggers
are appropriately set up, then one can be certain that when they both record the passage of a particle, that
the test device should also have done so. This method can be adapted to the scenario of estimating the
efficiency of a set of planar detectors each of unknown efficiency in a stack.

Example: If an efficiency is measured as ε = 0.999, from a sample of 1000 events, then the uncertainty
on the efficiency is σε = 0.001, and so the efficiency should be quoted as ε = 0.999 ± 0.001. It can be seen
from Eq. (5.3.2) that a precision determination of an efficiency that is extremely high, or low will require
the accumulation of a large number of events.

If we consider the extreme cases where ε = 0 or 100%, then the above formula would suggest that σε = 0.
However if one thinks about this, then it is unreasonable to expect that a result where an efficiency is trivially
good or bad (maximal or minimal) is a perfect measurement. This is a reflection of our ignorance, or lack
of information. In order to compute a reasonable estimate of the uncertainty that may be associated with
such an efficiency estimate, one must place an upper or lower limit on the efficiency, a subject discussed in
section 6.5.

5.4 Averaging results

5.4.1 Weighted average of a set of measurements for a single observable

If we perform an ensemble of independent measurements to obtain an estimate of the mean and uncertainty
of an observable, x ± σ, we are free to repeat our experiment in order to accumulate a larger ensemble of
data. In such circumstances we can recompute x ± σ for the combined original and new ensembles of data.
Usually we don’t have the luxury of being able to access all of the data available, for example when previous
or competing experiments have made a measurement that we are performing a more precise cross check of.
If this is the case, we need to find a way of combining the two results x1±σ1 and x2±σ2. Naively one might
be tempted to average x1 and x2 by computing x = (x1 + x2)/2, however that is not a particularly useful
measure of the combination if one of the measurements is more precisely determined than the other. Only
in the limit where σ1 & σ2 is a good approximation might we consider the arithmetic mean of x1 and x2 a
good representation of the average value of x.

In order to overcome this problem we can compute a weighted average derived using a least squares statistic
(see chapter 8) of two uncorrelated measurements, that takes into account the knowledge of uncertainties in
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each individual measurement using

x ± σx =
x1/σ2

1 + x2/σ2
2

1/σ2
1 + 1/σ2

2

±
(
1/σ2

1 + 1/σ2
2

)−1/2
, (5.4.1)

=
σ2

2x1 + σ2
1x2

σ2
1 + σ2

2

±
(

σ2
1σ

2
2

σ2
1 + σ2

2

)1/2

. (5.4.2)

When considering n such measurement this generalises to

x ± σx =

n∑

i=1
xi/σ2

i

n∑

i=1
1/σ2

i

±
(

n∑

i=1

1/σ2
i

)−1/2

. (5.4.3)

Here each measurement is weighted by the reciprocal of its variance in order to compute the average. The
corresponding uncertainty is the square root of the inverse of the sum in quadrature of the reciprocals of the
variances of the measurements.

5.4.2 Weighted average of a set of measurements for a set of observables

If one wants to compute a weighted average of a set of correlated observables x from a number of measure-
ments M , then the procedure follows a generalisation of the method used for the uncorrelated case. For
the general case (again obtained using the least squares method) one obtains a matrix equation relating the
covariance matrix V and the difference between the set of observables xj from the jth measurement and the
mean value of that measurement set x. As shown in James (2007) the mean values x and covariance matrix
obtained for the ensemble of measurements are given by

x =




M∑

j=1

V −1
j





−1

·




M∑

j=1

V −1
j xj



 ,

V =




M∑

j=1

V −1
j





−1

. (5.4.4)

If we consider the case of M measurements of a set of two observables a and b, then Eq. (5.4.4) becomes

x =




M∑

j=1

(
σ2

a σab

σab σ2
b

)−1

j





−1

·




M∑

j=1

(
σ2

a σab

σab σ2
b

)−1

j

(
a
b

)

j



 ,

V =




M∑

j=1

(
σ2

a σab

σab σ2
b

)−1

j





−1

, (5.4.5)

where

(
σ2

a σab

σab σ2
b

)−1

j

=

[
1

σ2
aσ2

b − σ2
ab

(
σ2

b −σab

−σab σ2
a

)]

j

. (5.4.6)
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From this one can see that for uncorrelated observables in the measurement set we can reduce Eq. (5.4.4)
to a set of calculations for each of the individual observables. On doing this we recover a set of weighted
averages of the form given in Eq. (5.4.3), one for each observable. A worked example of how to compute a
weighted average of correlated observables is given in section ??.

5.5 Systematic errors and systematic bias

Until now we have only considered errors that are statistical in nature. These are uncertainties on a mea-
surement that result solely from our ability to extract information about an observable assuming that the
analysis method is perfect. In reality there are other types of errors that have to be considered when making
measurements. These are all called systematic errors and are related to uncertainties in our measuring
device (i.e. the scale on a meter rule or its equivalent) as well as anything else that may impact upon our
result.

Systematic errors should not be confused with a systematic bias on a measurement. What’s the difference
between bias and error? A bias is a systematic offset on a measured observable that results from the
procedure used. An error is an uncertainty attributable to an effect. The knowledge of a systematic bias
on a measurement also has a systematic uncertainty associated with it. Having determined the value and
uncertainty of a bias, one can make a correction to a measured observable to remove the effects of the bias.
Such a correction becomes an integral part of the analysis method, and may also provide insight on how to
improve the method for future measurements. This can be illustrated through the following example.

Having prepared an experiment to measure the lifetime of cosmic ray
muons one makes an assumption that the equipment used by one of your
colleagues was sufficiently well calibrated. After taking your data you
have a measurement with a relative precision of 1%, but you find that this
is 10% smaller than anticipated based on the literature. This difference is
significant, so you investigate possible sources of bias in your procedure.
Finally the problem is traced back to a poor calibration. In an ideal world
at this point you would consider re-running the experiment, discarding
your existing data, however you have a deadline in a few days and only
have time to use the data already collected. In this case, you determine
a way that you can quantify the bias from the poor calibration, which
corresponds to −(10 ± 0.5)% on the measured lifetime. So now you can
correct your original value by a shift of +10%, and combine the error on
the bias, with the statistical uncertainty for your report. Your final result
is compatible with the literature, and the precision of your measurement
is 1.5% adding the statistical and systematic errors assuming they may
both be correlated, and highlight that one may improve the technique by
re-calibrating more often for future measurements.

It is important to note that in the above illustration, the experimenter finds a problem with the method, and
quantifies how this affects the result, prior to correcting the result and including an additional uncertainty
from the correction. One thing that must never be done is to ‘massage’ or fabricate the data! From time
to time experiments make more precise measurements of well known quantities and do find that they are
significantly different from those reported in the literature. Such differences are often an indication that the
previous method had a systematic effect that was unknown or overlooked and sometimes these will simply
be the result of statistical fluctuations. If the people doing those repeat experiments had massaged their
data in order to agree with the previous result, they would obtain the wrong results and would have wasted
considerable resources in doing so. It is important that you remain an objective scientist when making
measurements, and treat surprising results with the same (or more) diligence that you would an expected
result.
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Sometimes the systematic error associated with the correction will turn out to be small, sometimes it will
dominate the total uncertainty reported. Similarly sometimes the bias from an effect will be negligible, and
sometimes, as in the above illustration it will not.

Statistical errors are Gaussian in nature, which is why we add them in quadrature. Systematic errors are
by definition almost certainly not. When dealing with systematic uncertainties there is no firm rule on
how to combine them. Often one will find that they are combined in quadrature, sometimes they will
be added linearly, and the other option is to add some in quadrature and some linearly depending on their
nature. Kirkup and Frenkel (2006) discuss systematic uncertainties on measurement for a number of concrete
examples. The treatment of systematic errors has to be considered carefully on a case by case basis, and
experience will help significantly in determining what to do with them. One definite case is outlined in the
following example.

On measuring the probability for a particle to decay into a final state with
two neutral pions (π0), we introduce a systematic uncertainty based on
our ability to reconstruct and identify both particles. This uncertainty
is typically 3% per π0 for the BABAR experiment, which was built at
the SLAC National Laboratory in California during the late 1990s, and
took data between 1999 and 2008. With a 2π0 final state, we have to
add the uncertainty on the reconstruction efficiency for each π0 linearly
because the effect of reconstructing one π0 is completely correlated with
the effect of reconstructing the second. So the systematic uncertainty
on measuring such a final state on the BABAR experiment has a total
contribution from π0 reconstruction of 6%. This uncertainty can now be
combined in quadrature with any other uncertainties that are considered
to be uncorrelated with it in order to obtain the total uncertainty on the
measurement.

5.6 Blind analysis technique

The concept of blind analysis is not new, for example Dunnington (1933) measured the value of e/m for
the electron this way. This technique has gained popularity in recent years. The previous section discussed
the need to remain objective when making a measurement, and to be as diligent as possible so as not
to introduce experimenter bias. That is by favouring one outcome over another the experimenter could
unwittingly perform a measurement that enables them to draw the favoured conclusion, irrespective of what
the data is actually telling them. The most natural way to unwittingly introduce experimenter bias in a
measurement would be to stop investigating possible systematic effects and sources of bias when one has
obtained a result in agreement with a previous experiment. This is not a sufficient requirement to ensure
that the result you have obtained is correct.

The method behind performing a blind analysis is to obscure the observable x being measured in an
unknown, but repeatable, way such that a measurement can be performed giving the result xblind. In
many circumstances, in addition to extracting xblind, it is possible to extract the systematic errors on xblind

(and subsequently x) and to perform all necessary cross checks and validation studies without the need
to determine the actual value of the observable being measured. Only once the analysis of data has been
completed is the observable ‘un-blinded’ to give the result x ± σx, where σx is the combined statistical and
systematic uncertainty on both x and xblind.

This may seem a rather strange way to perform a measurement, however it does remove any potential for
experimenter bias to influence a result. Of course if a mistake is found in the procedure once the observable
has been un-blinded, that mistake has to be rectified, otherwise an incorrect un-blind result would be
reported. The benefit of performing a blind analysis is that experimenter bias will be absent. The detriment
of performing such an analysis is that sometimes it is can be impossible or extremely impractical to perform
all necessary checks on a particular analysis in order to extract the observable. Where it is possible to perform
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a blind analysis, the experimenter needs to realistically weigh the advantages against the disadvantages of
doing so, including understanding how one can perform any and all necessary cross-checks on the analysis.
An example of such a case is one where you search for a particular signal in a sample of limited statistics,
and the signal itself depends on a number of parameters, all of which are unknown. How can you perform a
blind analysis of something you don’t even know exists? If there are a limited number of unknowns it may
be feasible to perform a blind analysis when searching for a new effect. When it is not possible to adopt a
blind analysis approach, the experimenter needs to rely on remaining objective and ensure that there are
sufficient processes in place in an analysis chain to avoid unwittingly biasing the end result. Ultimately as
long as the experimentalist remains objective then the procedures imposed by a blind analysis technique are
unnecessary.


