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measuring the magneti moment of Ag atoms, had also shown the surprising ourrene of twostates where only an odd number, 2`+ 1 was expeted. Later we shall disuss this experimentin detail.Spin annot be understood lassially. Several aspets of spin angular momentum defyour attempts to understand it as the analogue of a top spinning about its axis - despite the fatthat one's mental image of spin is preisely this lassial system! The key to the diÆulty lies inthe experimental fat, gleaned from many high energy sattering experiments on eletron andpositron beams, that the eletron is as lose to Newton's idealised point partile as one ouldimagine:Eletron sattering experiments are onsistent with: me = 0:51 MeV and re < 10�20 m.Taking the eletron as a sphere of mass me and radius re spinning about its entre with averagespeed v, and ignoring fators of order 1, the angular momentum is,J � remev � �h2 ; implying, re � �h2mev � �h2me � 2� 10�13 m;whih is seven orders of magnitude greater than the experimental limit. To put this into theontext of 1921, ompare this with the sizes of atoms (around 10�10 m) and of the proton (10�15m); yet at the time it was already known that the eletron was very muh smaller than eitheratom or nuleus. We an put this another way: the speed of rotation needed to explain themagnitude of the spin angular momentum for a partile as small as an eletron exeeds thespeed of light by seven deades: v � �h2mere > 2� 107 :Thus, like many quantum phenomena, spin has a lassial analogue, but the analogue fails toprovide a quantitative explanation; it only gives us a onvenient mental piture. Eletron spinappears to be an entirely quantum mehanial phenomenon. This statement is not, however,quite orret: in 1926 Dira presented his famous relativisti wave equation for the eletron - theDira equation - whih not only gives the orret spin angular momentum, but also an exellentapproximation to its measured magneti moment and a predition that the eletron has anantipartile, now alled the positron. Thus relativity in onert with QM plays an essential rolein the explanation of spin.Having onluded that we annot piture spin angular momentum simply as matter rotatingin some sort of orbit around the eletron's entre whose shape we ould hope to determine -perhaps by some sort of generalisation of a spherial harmoni - we now fae a dilemma: whatare the oordinates that play the role of (x; y; z) or (r; �; ') in desribing orbital angular momen-tum? Sine we do not know we must resort to an abstrat approah via the angular momentumoperators for spin. This has already been aomplished by our disovery that the ommutationrules for the angular momentum operators bJ provide for the possibility of spin angular momen-tum �h=2. We now ontinue along that path by following Heisenberg's matrix approah to QMin whih no referene need be made to the oordinates.(2) INTRODUCING HEISENBERG'S MATRIX MECHANICS.In his matrix version of QM Heisenberg ahieved a form of the theory whih made refereneonly to diretly measurable physial observables, the expetation values. The formalism isideally suited to the quantum mehanial study of angular momentum, espeially spin. Themost appropriate notation to use is Dira's bra/ket formulation, but sine I wish to avoid2



introduing yet more new material I shall justify and explain the steps in the argument in terms oforbital angular momentum and simply arry over the results diretly to spin angular momentum.However, all results an be proved in a general way without reourse to the integrations I use.Given the eigenfuntions  j;mj of the angular momentum operators bJ2, and bJz, the gener-alised expansion theorem allows us to write, for any wave funtion 	j orresponding to a giventotal angular momentum j: 3 	j = jXmj=�j mj  j;mj : (1)Note that (a) we are onsidering a system with de�nite total angular momentum, 	j being aneigenstate of bJ2, so there is no sum over j here; (b) we do not mention any spatial dependenefor the wave funtion beause for spin wave funtions we don't know whether there is any,and if there is we don't know what the oordinates are.4 The oeÆients in the expansion arenormalised, jXmj=�j jmj j2 = 1 (2)This follows from the normalisation of 	j and the orthonormality of the eigenstates  j;mj andshows that the jmj j2 are probabilities. For a system in the state 	j a measurement of thez�omponent of angular momentum will yield one of the eigenvalues �hmj with probabilityjmj j2. After a measurement of the z�omponent of angular momentum yielding the result mjthe wave funtion beomes 	j after =  j;mj (3)and if the system is then left undisturbed, a subsequent measurement will yield the same resultmj with probability 1.Now we onsider the ase of orbital angular momentum, where the wave funtion does dependon the oordinates, and the expansion eigenfuntions are just the spherial harmonis Yj;mj . Theexpetation value of any operator bA when the system is in the state 	j is then5h bA i = Z 	�j bA	j d3x (4)= Xm0j Xmj �m0j mj Z  �j;m0j bA j;mj d3x (5)= CyAC (6)(a) The expansion oeÆients have been assembled into a (2j +1)�dimensional olumn vetor,C - you an think of the entries as the omponents of the original wave funtion 	j in the basisof eigenstates  j;mj : C = 0BBBBBBB� jj�1......�j
1CCCCCCCA Cy = ( �j �j�1 : : : : : : ��j) (7)3Stritly speaking, we should say the total angular momentum is �hpj(j + 1), but we shall often lapse intothis shorthand. In a similar way we refer to spin 1/2 or �h=2 instead of �hp1=2(1=2 + 1) = �hp3=2.4This is where the Dira formulation omes into its own. The states are represented by the kets jji whih areindependent of the oordinates, whatever they may be.5We use the notation bA for abstrat quantum mehanial operators, A for the matries representing them and(A)a;b � Aa;b for the a; b element of the matrix. Bold faed symbols without a hat denote olumn vetors, C. InDira notation the right hand side of eq (4) is hjj bAjji, while the integral in eq. (5) is hj;m0j j bAjj;mji,3



The vetor C tells us everything we an know about the wave funtion 	j and plays the role ofthe wave funtion in matrix mehanis, inluding the normalisation,CyC = jXmj=�j jmj j2 = 1: (8)(b) Similarly, the (2j+1)� (2j+1) matrix A ontains all the information about the expetationvalue of bA for all possible situations, ie. for any possible wave funtion 	j, now represented bythe vetor C; the matrix elements of A are:Aab � (A)m0jmj = Z  �j;m0j bA j;mj d3x (9)We an also show that the rules of matrix multipliation apply, ie. the matrix representationof the operator bA bB is indeed the produt AB of the matries representing bA and bB separately.One onsequene of this is that if a set of operators, suh as the angular momentum operators,satisfy a set of ommutation relations then so do the matries representing them.An important speial ase ours when the eigenfuntions used in the above are eigenstatesof the operator bA itself, for example with bA = bJz,bJz  j;mj = �hmj  j;mj (10)where the eigenvalue is �hmj In that ase the matrix representing bJz is diagonal:(Jz)m0jmj = Z  �j;m0j bJz j;mj d3x= �hmj Z  �j;m0j  j;mj d3x for eigenstates of bJz;= �hmj Æm0j ;mj (11)where, in the last step, we used the orthonormality of angular momentum eigenstates. Similarly,for the bJ2 operator, its matrix representation is not only diagonal, but simply a multiple of theunit matrix: J2m0jmj = �h2j(j + 1) Æm0j ;mj (12)In its full glory the Jz matrix looks like this:Jz = 0BBBB� (Jz)j;j (Jz)j;j�1 : : : (Jz)j;�j(Jz)j�1;j (Jz)j�1;j�1 : : : (Jz)j�1;�j... ... ... . . .(Jz)�j;j (Jz)�j;j�1 : : : (Jz)�j;�j 1CCCCA = �h 0BBBB� j 0 : : : 00 j � 1 : : : 0... ... ... . . .0 0 : : : �j 1CCCCA (13)and the J2 matrix like this: J2 = �h2j(j + 1) 0BBBB� 1 0 : : : 00 1 : : : 0... ... ... . . .0 0 : : : 1 1CCCCA (14)
To summarise: All the onsequenes of quantum mehanis an be obtained from its ma-trix formulation: all information about the wave funtion is ontained in the olumn vetor C,whih is heneforth known as the wave funtion and whih is normalised,CyC = 1: (15)4



All operators are represented by matries A; measurements yield only expetation values whihare alulated from matrix produts suh as:h bAi = CyAC (16)The matrix A is diagonal in a basis of eigenstates of bA, the diagonal elements being the eigen-values of the operator. Finally notie that the general wave funtion vetor C is not itself aneigenvetor of the matrix A, reeting the fat that 	j is not an eigenstate but a linear om-bination of eigenstates  j;mj ; however, if we take 	j to be an eigenstate  j;mj , then all the 'svanish exept mj = 1. The wave funtion would then be represented by the olumn vetor withzeros in every position exept the mj�th,C = 0BBBBBBBBB�
00...1...0
1CCCCCCCCCA (17)and it would be an eigenvetor of the matrix Jz:JzC = �hmj C (18)The key point for us is that this formalism is essential when one deals with purely quantumphenomena where, as in the ase of spin, it is not known what the appropriate variables, oroordinates atually are.(3) j � s = 1=2: MATRICES FOR THE SPIN-1/2 OPERATORS.At this stage we have nearly all the neessary equipment to write down the matries rep-resenting the angular momentum operators for any value of j. These matries will obey theommutation relations of the abstrat operators they represent, just as do the di�erential op-erators �i�h(y�=�z � z�=�y), et. used previously to represent the orbital angular momentumoperators. When we are talking about the speial ase of orbital angular momentum we knowwhat degrees of freedom are involved - (�; ') - but for spin we have no idea, and so the onlypossibility open to us is to use the matrix representation. This is why the abstrat approahto the angular momentum operators is so useful - indeed indispensable. In this setion we willobtain these operators for spin-1/2 in as elementary way as possible; for higher values of j thismethod would beome impossibly umbersome. In Appendies A & B we give a systemati gen-eral method for �nding the matries for any j whih is quite elementary but involves a multitudeof subsripts due to this generality. I reommend that you look through it after reading thissetion simply to onvine yourself that it an be done diretly.Our strategy here will be to onstrut the 2�2 Hermitian spin-1/2 matries by requiring thatthey satisfy the angular momentum ommutation relations. We begin with the two diagonalmatries Jz = Sz and J2 = S2, whih we have already found in eqs. (13) and (14):Sz = �h2  1 00 �1 ! S2 = 3�h24  1 00 1 ! (19)where the fator in front of the S2 matrix is �h2j(j + 1) with j � s = 1=2. We now write the asyet unknown omplex matries Jx = Sx and Jy = Sy asSx = �h2  a b d ! Sy = �h2  a0 b00 d0 ! (20)5



Step 1: First we show that the two matries have no diagonal elements, a = d = a0 = d0 = 0by demanding that they satisfy the ommutation relations [Sy; Sz℄ = i�hSx and [Sz; Sx℄ = i�hSy:[Sy; Sz℄ = i�hSx (21)ie. ��h2�2 ( a0 b00 d0 ! 1 00 �1 ! �  1 00 �1 ! a0 b00 d0 !) = i�h22  a b d !hene, �h24 ( a0 �b00 �d0 ! �  a0 b0�0 �d0 !) = i�h22  a b d !or, anelling �h2=2,  0 �b00 0 ! = i  a b d ! (22)Hene, equating individual omponents of the matries,a = 0; d = 0 and � b0 = ib; 0 = i (23)To see the onsequenes of the ommutator[Sz; Sx℄ = �[Sx; Sz℄ = i�hSy (24)all we need do is notie that the alulation goes preisely as the one above exept for theinterhange x $ y, ie. of primed and unprimed symbols, and an additional minus sign on theleft. The result is therefore:a0 = 0; d0 = 0 and b = ib0; � = i0 (25)Putting all these results together we now have,a = 0; d = 0; a0 = 0; d0 = 0 and b0 = �ib; 0 = i (26)so that the matries are o�-diagonal and an be expresssed in terms of only two unknownnumbers b and , Sx = �h2  0 b 0 ! Sy = �h2  0 �ibi 0 ! (27)Step 2: The penultimate step is to impose the remaining ommutation relation,[Sx; Sy℄ = i�hSz (28)ie. ��h2�2 ( 0 b 0 ! 0 �ibi 0 ! �  0 �ibi 0 ! 0 b 0 !) = i�h22  1 00 �1 !hene, �h24 ( ib 00 �ib ! �  �ib 00 ib !) = i�h22  1 00 �1 !or, after anelling i�h2=2,  b 00 �b ! =  1 00 �1 ! (29)Hene, equating individual omponents of the matries,b = 1 (30)6



Step 3: The �nal step is the phyial requirement that Sx and Sy orrespond to physialobservables with real expetation values, ie. that they be Hermitian matries, 6Syx � (S�x)T = Sx Syy = Sy (31)Thus, for Sx:  0 b 0 !y =  0 �b� 0 ! =  0 b 0 ! (32)whih immediately tells us that the parameters are omplex onjugates of eah other, = b� (33)This ondition also ensures that Sy is Hermitian, so there is no further information to be gleaned.Combining our two relations for b and  then yieldsjbj2 = jj2 = 1 (34)The general solution is b = ei�;  = e�i�; (35)where � is a onstant real phase angle whih has no physial onsequenes. We are thereforefree to hoose the simplest solution, � = 0; the physis would be the same for any other hoie,b =  = 1 (36)We �nally have the matrix representation for the spin-1/2 operators:Sx = �h2  0 11 0 ! Sy = �h2  0 �ii 0 ! Sz = �h2  1 00 �1 ! S2 = 3�h24  1 00 1 !(37)

6Beware: only if operators are being represented by matries does the adjoint operation (the dagger) orre-spond to the omplex onjugate transpose operation; for representation by di�erential operators it orrespondsto omplex onjugation and turning the ation from operating on  to the right into operating on  � to the leftin expetation values. 7



(4) PAULI MATRICES & SPIN WAVE FUNCTIONS FOR j � s = 1=2.Sine spin does not emerge from the quantum mehanis of the Shr�odinger equation, it hasto be grafted on as an additional postulate: the wave funtion of a partile with spin is a produtof the spatial wave funtion, 	(r; t) whih satis�es the time dependent Shr�odinger equation,and a spin wave funtion, �spin whih is a (2j+1)�omponent vetor obtained from the matrixformalism:7 	total = 	(r; t)�spin (38)This is not to say that QM is unable to inorporate spin into the theory in a uni�ed way; themissing ingredient is relativity: the Shr�odinger equation is non-relativisti. Shortly after theShr�odinger equation was �rst introdued Dira published his relativisti wave equation for theeletron - the Dira equation - whih not only gives the orret spin angular momentum, butalso an exellent approximation to its measured magneti moment and a predition that theeletron has an antipartile. Relativisti wave equations also exist for other values of spin. In theDira equation the wave funtion ontains all three ingredients in a uni�ed way: the spae-timedependene, the spin dependene and the antipartile wave funtion.For spin-1/2, we have seen that the angular momentum operators bJ, now alled bS for `spin',are represented by 2� 2 Hermitian matries Si, given by the Pauli matries �i:Si = �h2 �i; i = 1; 2; 3 (or, in an often used equivalent labelling, i = x; y; z); (39)where: �1 = �x =  0 11 0 ! �2 = �y =  0 �ii 0 ! �3 = �z =  1 00 �1 ! (40)We emphasise again that the matries satisfy preisely the same ommutation relations as thequantum mehanial angular momentum operators themselves:for the QM operators: [ bSx; bSy℄ = i�h bSz; for the matries: [Sx; Sy℄ = i�hSz (41)In fat, as we saw in the previous setion, these matries an be disovered by simply seeking theHermitian 2� 2 matries satisfying the ommutation relations - the answer is unique. Anotheruseful way to look at the Pauli matries is that any Hermitian 2� 2 matrix an be written as alinear ombination of Pauli matries and the unit matrix,I = �0 =  1 00 1 ! (42)The eigenvetors (or eigenstates), �+ and ��, of the diagonal matrix Sz = �h=2�z are inter-preted as quantum states with de�nite values of the z�omponent of spin; these values are theeigenvalues �hms = +�h=2 and �hms = ��h=2. To �nd these eigenstates we apply a systematiproedure, although the result is fairly obvious:�+ =  10 ! and �� =  01 ! (43)We are using the notation � in the ase of spin-1/2 for the olumn vetors denoted C in thegeneral disussion of setion 2.7Atually the situation is a little more ompliated: when a spinning partile is subjeted to a time-dependentmagneti interation the spin part beomes time-dependent. This is ahieved through having time-dependentoeÆients a = a(t) and b = b(t) in the expansion theorem for �spin in eqs. (51) & (52). See Appendix D for aworked example. 8



Proof: The requirement that � be an eigenstate of Sz is:Sz � = �h2��; (44)where, although we already know that the eigenvalues of Sz orrespond to � = �1, we shall�nd it onvenient to atually on�rm this by alulation. Now the most general form for anynormalised spin-1/2 wave funtion is� =  ab ! with jaj2 + jbj2 = 1: (45)Our task is to �nd a; b and �. Using the known form for the Sz matrix, the requirement that �be an eigenstate of Sz beomes:Sz � = �h2�� = �h2� ab != �h2  1 00 �1 ! ab != �h2  a�b ! (46)Equating the elements of olumn vetors in the �rst and last lines and anelling �h=2, we �nd:a� = a (47)b� = �b (48)These two equations are learly inonsistent if both a and b are non-zero; but they an be sati�edby taking one to be zero. This gives two possibilities,either b = 0 a 6= 0 and therefore � = +1and normalising, a = 1or a = 0 b 6= 0 and therefore � = �1and normalising, b = 1 Q.E.D.As be�ts eigenstates of a Hermitian operator with di�erent eigenvalues, they are orthonormal,ie. both normalised and orthogonal:�y��� = 1 and �y��� = 0 (49)Sine S2 ommutes with Sz they are also eigenstates of S2 with ommon eigenvalue 3�h2=4:Sz �� = ��h2 �� and S2 �� = 34�h2 �� (50)All these equations an be heked out expliitly by using the matries for the spin operators,and you should do this for yourself. Moreover you an see that the Expansion Theorem holdsbeause any 2-dimensional vetor, �, an be written as a linear ombination of the two unitvetors �� given in eq. (43): 8 � = a�+ + b �� (51)8This is a speial ase of equation (1) for spin-1/2, with spin eigenvalues j = s = 1=2 andmj = ms = �1=2, andthe general wave funtion C beomes the general two-omponent vetor, now alled �, with 1=2 = a; �1=2 = b.9



� =  ab ! �y = ( a� b�); with normalisation: Pms jms j2 = jaj2 + jbj2 = 1 (52)In general the state � is not an eigenstate of any of the spin operators. This is just like thease of states obtained from linear ombinations of energy eigenstates: they, too, are not eigen-states of the Hamiltonian operator. The ase of spin is so muh simpler beause the spae is�nite-dimensional (2-D for spin-1/2) and so there are always only a �nite number eigenstatesand terms in the expansion theorem. However the measurement postulate is the same:Measurement Postulate: For a spin-1/2 partile in a general state � given above, the pos-sible outome of a measurement of the z�omponenet of spin is one of the eigenvalues ��h=2(ie. ms = �1=2), with respetive probabilities jaj2 and jbj2. If say, a measurement yields avalue ms = +1=2, then the wave funtion `ollapses' to the eigenstate �after = �+. Sine thisis an eigenstate of Sz, a subsequent measurement will yield the same value ms = +1=2 withprobability 1. We will shortly explore these onepts using the Stern-Gerlah experiment as themethod for preparing spin states and measuring spin omponents.(5) ROTATED SPIN OPERATORS & THEIR EIGENFUNCTIONS.Note: The following derivation is a fairly general one leading to the general result, eq. (70). Wewill atually only use the speial ase, eq. (72) in disussing the Stern-Gerlah experiment. Thisis derived separately in Setion 6 by a more elementary method, so you may skip the remainderof this setion if you wish.As a preparation for our disussion of the Stern-Gerlah experiment we now ask the followingquestion: Suppose we prepare a spin-1/2 system in an eigenstate of Sz and then subsequentlymeasure the omponent of spin in some other diretion; what are the possible outomes? Anequivalent way to pose this question is: What are the eigenstates of the spin operator orre-sponding to a diretion spei�ed by the unit vetor n? Beause the spin operator is a vetor itsomponent along n is simply the projetion,Sn = n:S and we seek the �0� for whih Sn �0� = ��h2 �0� (53)For simpliity we only onsider the ase where the vetor n lies along the diretion obtained byrotating the z�axis by an angle � about the y�axis. If we all this the z0�axis, and the rotatedx�axis perpendiular to it the x0�axis, then we are just asking for the new spin operators inthe new oordinate system (x0; y0; z0):
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Figure 1: Pituring the rotation byangle � about the y�axis.
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Sine S transforms as a vetor the �gure shows that the relation between new and old matriesis: Sx0 = Sx os � � Sz sin � (54)Sy0 = Sy (55)Sz0 = Sz os � + Sx sin � (56)so that the new matries beome,Sx0 = �h2  � sin � os �os � sin � ! Sy0 = Sy = �h2  0 �ii 0 ! Sz0 = �h2  os � sin �sin � � os � !(57)As a hek on our algebra we note that � = 0 or � = 360Æ gives bak our original matries, while� = 90Æ just exhanges the x� and z�matries, with a sign hange on Sx0 , as we would expetsine the new x0�axis is now playing the role of the original �z�axis. This shows rather learlythat it's just a matter of our hoie onto what axis we deide to measure the projetion of thespin.Now we look for the eigenstates of the new Sz0 matrix. By the expansion theorem, eq. (51),these eigenstates, �0, must be normalised linear ombinations of the original eigenstates of Sz(eq. (43): �0 = a�+ + b�� =  ab ! with jaj2 + jbj2 = 1: (58)For this to be an eigenstate, with eigenvalue ��h=2 (where we already know � = �1 beause thepartile has spin-1/2), Sz0 �0 = �h2��0: (59)Using our matrix representation for Sz0 and the expressions for the original eigenvetors �0�,Sz0 �0 = �h2��0 = �h2� ab ! (60)= �h2  os � sin �sin � � os � ! ab != �h2  a os � + b sin �a sin � � b os � ! (61)Equating the elements of olumn vetors in the �rst and last lines, anelling �h=2 and olletingoeÆients of a and b, we �nd: a(�� os �) = b sin � (62)a sin � = b(�+ os �) (63)Dividing the equations gives a onsisteny ondition leading to the expeted two eigenvalues:(�� os �)(�+ os �) = sin2 �; ie. �2 � os2 � = sin2 �; or �2 = 1; hene � = �1 (64)Considering eah ase in turn gives the two eigenstates �0+ and �0�, where we use the trig. iden-tities (1 � os �) = 2 sin2 �=2; (1 + os �) = 2 os2 �=2; sin� = 2 sin �=2 os �=2 :For � = +1 : ba = (1� os �)sin � = 2 sin2 �=2;2 sin �=2 os �=2 = sin �=2;os �=2 (65)11



For � = �1 : ba = �(1 + os �)sin � = � 2 os2 �=2;2 sin �=2 os �=2 = �os �=2;sin �=2 (66)The magnitude of a in eah ase is obtained from the ondition that �0� be normalised:jaj2 + jbj2 = jaj2(1 + j ba j2) = 1 (67)For � = +1 : a = os �=2; b = sin �=2 (68)For � = �1 : a = sin �=2; b = � os �=2 (69)Finally we obtain the required eigenstates of Sz0 :�0+ =  os �=2sin �=2 ! and �0� =  sin �=2� os �=2 ! (70)We an hek our algebra by noting that we reover the original Sz eigenstates �� for � = 0. Butby putting � = 2� we fail to reover the original eigenstates, even 'though this orresponds to thesame point in spae as � = 0. This quite remarkable property is an entirely new phenomenon:the spin-1/2 wave funtions are not single-valued, but double-valued:�0�(� + 2�) 6= �0�(�)but, �0�(� + 4�) = �0�(�) (71)Finally we note the result we will apply to the double Stern-Gerlah experiment:For � = �2 ; �0+ = 1p2  11 ! and �0� = 1p2  1�1 ! (72)A glane at Figure 1 will show that � = �=2 orresponds to the new z�axis pointing along theold x�axis: thus Sz0 = Sx and so these eigenstates are eigenstates of Sz. In the next setion weshall obtain this result diretly without quite so muh algebra.If we had repeated the above analysis, but rotated by �� lokwise about the x�axis instead, wewould have found, Sx00 = Sx (73)Sy00 = Sy os �� � Sz sin �� (74)Sz00 = Sz os �� + Sy sin �� (75)so that the new matries beome,Sy00 = �h2  � sin �� �i os ��i os �� sin �� ! Sx00 = Sx = �h2  0 11 0 ! Sz00 = �h2  os �� �i sin ��i sin �� � os �� !(76)The eigenstates of Sz00 would then beome:�00+ =  os ��=2i sin ��=2 ! and �00� =  sin ��=2�i os ��=2 ! (77)Finally we obtain the eigenstates of Sy:For �� = �2 ; �00+ = 1p2  1i ! and �00� = 1p2  1�i ! (78)12



We see that �� = �=2 orresponds to the new z�axis pointing along the old y�axis: thus Sz00 = Syand so these eigenstates are eigenstates of Sy. You should on�rm this last result by using themethod of the next setion to obtain it diretly without quite so muh algebra.(6) SPIN EIGENFUNCTIONS FOR QUANTIZATION ALONG THE x�AXIS:EIGENSTATES OF Sx.Given the eigenfuntions, eq. (43), for spin quantised along the z�axis, we now wish to �ndthe eigenfuntions for spin quantised along the x�axis. This is equivalent to asking for theeigenstates �0 of Sx, Sx �0 = �h2��0: (79)where, although we already know that � = �1 (beause we are desribing a spin-1/2 partile),we shall �nd it onvenient to atually on�rm this by alulation. Now the information we beginwith is that the eigenstates of Sz are given by eq. (43), so we an use the expansion theorem toexpress our unknown wave funtions �0 as a linear ombination, eqs. (51), (52):�0 = a�+ + b�� =  ab ! with jaj2 + jbj2 = 1: (80)and then use the matrix representation Sx given in eq. (37),Sx = �h2  0 11 0 ! (81)Putting these all together, the requirement that �0 be an eigenstate of Sx reads:Sx �0 = �h2��0 = �h2� ab != �h2  0 11 0 ! ab != �h2  ba ! (82)Equating the elements of olumn vetors in the �rst and last lines and anelling �h=2, we �nd:a� = b (83)a = b� (84)Dividing the equations gives a onsisteny ondition leading to the expeted two eigenvalues:�2 = 1 hene � = �1 (85)Sine a and b have the same magnitude for both eigenvalues, the ondition that �0� be normalisedrequires: jaj2 + jbj2 = 2jaj2 = 1; or, taking a real and positive, a = 1p2 (86)and therefore a = 1p2 b = � 1p2 for � = �1 (87)Finally we obtain the two eigenstates �0+ and �0�,�0� = 1p2(�+ � ��) (88)13



or, in expliit form, �0+ = 1p2  11 ! and �0� = 1p2  1�1 ! (89)where the � denote eigenstates of Sx with eigenvalues ��h=2. It goes without saying that thesestates are still also eigenstates of S2 with the same eigenvalue 3�h2=4 as the original eigenstates�� of Sz. We shall see the physial signi�ane of all four of these states when we onsider thetriple Stern-Gerlah experiment.(7) THE TRIPLE STERN-GERLACH EXPERIMENT.Before desribing the details of the Stern-Gerlah experiment, we shall �rst abstrat itsessene in order to disuss the theory of measurement in QM. The experiment an be thoughtof as a method for either measuring a omponent of the spin or of preparing an ensemble ofstates having one omponent of spin determined, ie. of preparing an eigenstate of Sz, Sx orwhatever. We represent the apparatus as a `blak box' into whih a beam of spin-1/2 partilesis injeted and from whih emerge two spatially separated beams: one with spin projetion alongthe measurement axis +�h=2; the other with ��h=2. Figure 2 illustrates two separate measure-ment experiments in whih an unpolarised beam of spin-1/2 partiles enters the apparatus. Wean think of the inoming beam as having a random mixture of all possible spin orientations:one experiment measures the z�omponent; the other the x�omponent. The two outgoingstates are spatially separated and exit in the pure eigenstates �� and �0� respetively.- -- �+��Sz - -- �0+�0�SxFigure 2: Abstrat Stern-Gerlah experiments, one measuring the z�omponentof spin, the other the x�omponent. Note that the outgoing beams have equalintensity one-half that of the inoming beam.These illustrate the angular momentum quantization rule that for a spin-1/2 partile (the in-oming partile) the only possible outome of a measurement of a omponent of the spin angularmomentum is one of the eigenvalues, +�h=2 or ��h=2. This is the �rst stage of the measurementpostulate of QM. Note how radially di�erent the outomes of these experiments are omparedwith our lassial expetation: sine the inoming beam is unpolarised we expet the spins to beoriented randomly in all possible diretions, with projetions on the z-axis having a ontinuumof values lying between +�h=2 and ��h=2; instead we only measure two values, and any singlepartile passing through the apparatus will exit either in one beam or the other, not anywherebetween the beams. Even more at variane with our lassial experiene is that the very sameinoming beam going through the Sx measuring apparatus now seems to have only the maximumpossible x-axis projetions, ��h=2, a lear impossibility if they already have the maximum z-axisprojetions as evined by the Sz measuring experiment! From the quantum mehanial point ofview we have to aept that in the inoming beam the spin projetion of an individual partile isnot known, only its probability. Thus it is only after a measurement or preparation that we ansay for ertain what it is, and then only at the moment of measurement, not before. If we aretempted to say, `Well, it really had the value we determined all along and we just didn't know ituntil we atually looked', then the fat that a similar measurement of the x-omponent an only14



yield ��h=2 should ast doubt on this interpretation, sine now it seems it ould `really' have hada omponent inonsistent with the value already determined. Thus it seems that a partile'sproperty depends on whih experiment we set up. We shall see this in the triple Stern-Gerlahexperiment. Thus, just like the two-slit experiment, we have to think of an inoming partileas being in neither one state �+ nor the other ��, but `in some sort of equal mixture of thetwo'; the physial meaning of this statement is that a measurement of the z-omponent of spinfor an unpolarised beam will yield only one of the two eigenvalues of Sz, but with equal prob-ability. One the measurement is made, the wave funtion `ollapses' into the appropriate state.9The double Stern-Gerlah experiment enables us to illustrate the next stage of the mea-surement postulate. First onsider two Stern-Gerlah experiments, both measuring the z�omponentof spin. We now disard one of the beams emerging from the �rst stage. This an be viewedas measuring the z�omponent of spin and using this to prepare the system in the eigenstate�+, or as the `ollapse' of the wave funtion into the state �+ as a result of the measurement(whih is the proess of separating the inoming beam and disarding the lower one). Sine thestate entering the seond stage has `ollapsed' to the eigenstate �+ (or has been prepared inthat eigenstate) the result of the seond measurement is ertain: only one beam now exits theseond, orresponding to spin up.- -- �+ ��DisardedbeamSz - �+Sz
Figure 3: Double Stern-Gerlah experiment illustrating the measurement proessin QM. Both measure the z�omponent of spin, but only one beam emerging fromthe �rst is admitted into the seond.10The triple Stern-Gerlah experiment illustrates several aspets of the quantum measur-ing proess and dramatises the onsequenes of the expansion theorem in a most remarkableway. We now interpose between the two Sz experiments of the double Stern-Gerlah apparatusa third experiment whih measures the x�omponent, Sx:

- -- �+ ��DisardedbeamSz -- �0+ �0�DisardedbeamSx -- �+��Sz
9A subtle point about the wave funtion representing the unpolarised inoming beam: we have not dealt withsuh inoherent states in this ourse, and so I have avoided writing down a wave funtion for it; but suh stateshave the property that we an still predit the probabilities I am talking about in the text. The formalism usedfor these so-alled mixed states is the density matrix formalism.10Sine there is nothing speial about the symbol z, we ould equally well have illustrated the priniple withmeasurement of the x�omponent. The same piture would serve with the replaements: Sz ! Sx and �� ! �0�15



Figure 4: Triple Stern-Gerlah experiment.The �rst and last stages measure the z�omponent of spin, but the beam seleted from the�rst is now submitted to an Sx measurement and only one emergent beam is in its turn sub-mitted to the �nal stage, a seond Sz measurement. The intermediate measurement has nowinuened the outome of the last measurement and we see the phenomenon of regeneration:the down spin state disarded in the �rst stage reappears in the outgoing beam of the wholeexperiment, as if the intermediate measurement of Sx had `disturbed' the system and reintro-dued some down omponent. In equations, the sequene is as follows: the inoming state is anunpolarised mixture of spin up and spin down with respet to any hosen axis; the z�axis isthe one hosen for the �rst stage measurement, so the spin up and down beams emerging fromthe Sz measurement are of equal intensity. Choosing to injet only the spin up beam into theSx measuring apparatus means that the inoming state for this stage is, �+, whih, using theexpansion theorem we may write in terms of the Sx eigenstates,�+ = 1p2�0+ + 1p2�0� (90)Again there are only two beams emerging from the Sx measurement with equal intensity, fromwhih we selet the one in state �0+. This is the initial state for the �nal Sz measurement, whihwe again expand, but this time in terms of Sz eigenstates:�0+ = 1p2�+ + 1p2�� (91)Here we have the �nal outome: there are two equal intensity beams emerging from the �nalstage, with eah Sz eigenstate being present, despite the fat that the �rst stage of the experimenthad disarded the beam in the �� spin down state.Now we ome to a ruial point: one may wish to attribute the regeneration observed in thetriple Stern-Gerlah experiment to the so-alled `disturbane' introdued by the intermediateSx measurement; but in fat this is no disturbane at all. We an show this by altering the lastexperiment by not exluding the Sx spin down beam, but allowing it also to enter the last Szmeasuring phase. The result is that only the spin up omponent emerges from the last stage:
- -- �+ ��DisardedbeamSz -- ������ -�0+�0�Sx - �+Sz

Figure 5: Triple Stern-Gerlah experiment without disarding the down ompo-nent at the intermediate stage. This shows that the intermediate stage introduesno `disturbane' when no detetion ours there.In equations this is simply stated: the two beams exiting the Sz apparatus are reombinedwhen they enter the �nal stage, maintaining their oherene. Thus the beam entering the �nalstage is a linear superposition of equal intensity beams, with wave funtion�Szout = 1p2�0+ + 1p2�0�= �+ (92)16



where, in the last line, we reognise the ombination of Sx eigenstates as the spin up Sz eigenstate�+. Hene we on�rm that the Sx apparatus itself does not disturb the system. Rather thanthe ollapse of the wave funtion resulting from a disturbane inside the Sx apparatus, it isa onsequene of a measurement being registered afterwards - in the ase of the triple Stern-Gerlah experiment the measurement is the proess of ompletely exluding the lower beamemerging from the Sx apparatus; the upper beam is not touhed at all and therefore su�ers nodisturbane. The analogy with the two-slit experiment should be obvious: if we blok the beamfrom one slit altogether we lose the interferene pattern. Thus we see that the at of measurementintrodues a degree of deoherene - the triple Stern-Gerlah experiment desribed is an extremease where one beam is ompletely destroyed, but one an imagine introduing a ounter in thelower beam instead as one does in attempting to follow the path of the beams in the two-slitexperiment. Finally we note that the experiments desribed here are very losely related to thefamous Aspet et al experiments whih tested the Bell inequalities and on�rmed this apparentlystrange behaviour of the QM measurement proess.
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(8) ATOMIC MAGNETIC MOMENTS & ATOMS IN A MAGNETIC FIELD.The purpose of the Stern-Gerlah experiment is to measure the magneti moments of neutralatoms, so we begin by examining the magneti properties of a lassial atomi eletron of harge�e orbiting a nuleus in a irle of radius r with speed v:
���	
6

r
M IAFigure 6: Magneti moment produed by a urrent loop.The orbiting eletron produes a urrent I =harge�(no. of iruits/se) = (�e) � (v=2�r)irulating around a loop of area A = �r2, ausing a dipole magneti �eld just like that of atiny bar magnet oriented perpendiular to the orbital plane, with a magneti moment:M = IA = � ev2�r �r2 = � e2me mevr = � e2me L = ��BL�h = �L (93)or in its full vetorial form,M = ��BL�h = �L for an orbiting e� (94)where  � �B=�h is the gyromagneti ratio and1 Bohr magneton � �B = e�h2me = 9:27 � 10�24 J T�1 (Joules per Tesla) (95)We have established an important result: beause the magneti moment is proportional to theangular momentum, any measurement of the magneti moment is at the same time a measure-ment of the angular momentum multiplied by the gyromagneti ratio. It turns out that this istrue whether we are talking about orbital or spin angular momentum or a ombination of both:the only di�erene resides in the numerial values.If we plae our atomi dipole in a magneti �eld it will experiene a fore, whih we anexpress as a potential energy:11Emag = �B:M (96)= B:L for an orbiting e� (97)= BzLz for an e� and z�axis along B (98)This term, with Lz ! bLz, is added to the Hamiltonian and, ating on an eigenstate of both bHand bLz, gives an additional energy to the eigenstate,Emag = �hm`Bz for an e� and z�axis along B (99)= �h!Lm` for an orbiting e� (100)11See Appendix C.1 and Figure 10 for a simple derivation. The negative gradient of this potential gives thefore F on the dipole. In general a fore ating on the dipole will produe both linear and rotational motion - theformer is zero in a uniform �eld; the latter is aused by a torque, r � F 6= 0, whih is present even in a uniform�eld, ausing preession of the dipole - see Appendix C.2 and Figures 11, 12, 13.18



Thus, we see that the energy orresponds to a harateristi frequeny, the Larmour frequeny,whih will appear as the resonant frequeny of radiation needed to indue the angular momen-tum to hange by one unit of �h in magneti resonane experiments. This is also the frequenywith whih a lassial dipole preesses about the diretion of the magneti �eld - see AppendixC.2 and Figures 11, 12, 13, where we show that both the lassial omponents Lx and Ly preessabout the z�diretion of the magneti �eld with the Larmour frequeny; and quantum mehan-ially it is the expetation values hbLxi and hbLyi whih preess at this frequeny- see Appendix D.(9) THE ZEEMAN EFFECT - EVIDENCE FOR AZIMUTHAL QUANTIZATIONAND FOR ELECTRONS IN ATOMS.Sine the appliation of a magneti �eld hanges the energy of orbiting eletrons, it also hasan interesting e�et on spetra. Historially this was the �rst evidene for angular momentumquantization as well as for the role of eletrons in produing atomi spetra. It also providedearly hints of angular momentum 1=2. We have shown that for an atomi eletron in a quantumstate labelled by the angular momentum quantum numbers `;m` the appliation of a magneti�eld shifts the energy by�Emag = �hm`Bz with m` = �`;�`+ 1; : : : ` (101)= �h!Lm` (102)Now onsider two energy levels in an atom, one the ground state with ` = 0, the other with` = 1. In the absene of a magneti �eld the ` = 1 level is 3-fold degenerate: there are threestates, all with ` = 1, but with m` = �1; 0;+1, and all with the same energy. Thus there is onlyone spetral line at a frequeny �0 orresponding to the energy di�erene E1�E0 = h�0 betweenthe two levels. Now with an applied magneti �eld the ` = 0;m` = 0 and ` = 1;m` = 0 levelsremain unhanged beause m` = 0 gives Emag = 0; but the two ` = 1;m` = �1;+1 levels shiftdown and up by ÆE = �h!L sine m` = �1. The result is three separate levels where one existedbefore: the magneti �eld has lifted the degeneray and reated two additional spetral lineson either side of the original line. The three lines illustrated in Figure 7 orrespond to thenormal Zeeman e�et. Spin and other aspets of the magneti interations in an atom lead toompliated Zeeman patterns known as the anomalous Zeeman e�et. The observation of theZeeman e�et was an important milestone in atomi physis beause it provided evidene for thequantization of angular momentum and for the eletron being in the atom and diretly involvedin the prodution of spetral lines: the splitting is both proportional to the applied magneti�eld and the harge to mass ratio e=me. The measured splitting gave the same value for e=meas had been obtained in studies of eletron beams ( beta rays), providing a diret window intothe atom. The Zeeman e�et is widely used in astronomy to measure large magneti �elds instars.
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(10) THE STERN-GERLACH EXPERIMENT & ELECTRON SPIN.It was Otto Stern in 1921 who proposed to use the e�et of an inhomogeneous magneti�eld on a magneti dipole to measure the magneti moments of atoms. If B = B(x; y; z) then,in addition to a torque the �eld will exert a net fore on the dipole beause the little magnet'snorth and south poles are in slightly di�erent �elds. In all our onsiderations we �nd it mostonvenient to hoose the z�axis to lie along the diretion of the magneti �eld, B = (0; 0; Bz).As usual, the fore is obtained from the gradient of the potential (see Appendix C.2 and Figure14 for a derivation): F = �rEmag (103)= r(M:B) (104)= r(MzBz) with z�axis along B (105)= Mz ��Bz�x ; �Bz�y ; �Bz�z � (106)In the Stern-Gerlah experiment the magnet poles are shaped to produe a magneti �eld thatvaries rapidly in the z�diretion only, Bz = Bz(z), 12 so the fore also ats in the z�diretion:F = (0; 0;Mz �Bz�z )= (0; 0;�Lz �Bz�z ) lassial orbiting e� (107)= (0; 0;��hm`�Bz�z ) quantum mehanial orbiting e� (108)where, in the last step, we have introdued the QM quantization rule for the z�omponent oforbital angular momentum. The 1922 Stern-Gerlah experiment was performed with a beam ofneutral 13 silver atoms, the inhomogeneous magneti �eld being produed by one of the poleshaving a razor-sharp pointed fae. The details are shown in the aompanying Figures 8 & 9whih also show the original results. Sine the silver atoms' magneti moments are randomlyoriented in the inident beam, the lassial expetation was that there be a ontinuous range ofdeetions, reeting the ontinuous distribution of Lz values in the beam. The QM predition isthat a disrete set of deetions should result from the quantization of orbital angular momentumwith 2` + 1 possibilities orresponding to m` = �`;�` + 1; : : : 0; : : : `, inluding zero deetionfor m` = 0. In fat no zero deetion was seen and only 2 deeted beams, one above and onebelow the expeted zero deetion, inonsistent with integral values of ` but suggesting insteadthe value 1=2 to give 2`+ 1 = 2.This experiment and many other hints from atomi spetra and the Zeeman e�et led tothe Goudshmidt-Uhlenbek suggestion in 1925 that in fat the eletron has an intrinsi spinangular momentum �h=2. The Stern-Gerlah experiment on Ag and later ones on Cu, Au, Na,K, Cs and H �nds its explanation in the fat that all these atoms have losed eletron shellsplus one extra valene eletron. The losed shell ontributes a net zero angular momentum andthe valene eletron has zero orbital angular momentum, ` = 0, but 1/2 unit of spin angularmomentum. The atom as a whole therefore has a total angular momentum �h=2 due solely to the12In the experiment depited in Figure 8 the beam travels along the y�diretion, with the �eld uniform alongthis diretion, although there is a small x�omponent to the �eld whih does vary slightly with both x and z. Inpratie these e�ets an be seen as distortions in the shape of the outgoing beam seen at the detetor as shownin the �gure, but do not obsure the main e�et seen due to the z variation.13It is essential to use a neutral beam in this experiment otherwise the relatively weak deetions due to themagneti dipole interation would be ompletely masked by the large deetions aused by a harged beam passingthrough a strong magneti �eld. 20





APPENDIX A: MATRIX ELEMENTS OF ANGULAR MOMENTUMOPERATORS - GENERAL EXPRESSIONS.We shall now �nd expressions for the matries representing the angular momentum operators.15We know that the operator bJ+ is the raising operator, generating from  j;mj with bJz eigenvalue�hmj, the next state up the ladder, bJ+ j;mj with eigenvalue �h(mj+1). But the state so generatedis not normalised and requires a normalising fator N to beome so:bJ+ j;mj = N  j;mj+1 (116)where both  j;mj and  j;mj+1 are normalised eigenstates. Thus,Z j bJ+ j;mj j2 d3x = N2 Z j j;mj+1j2 d3x = N2 sine  j;mj+1 is normalised. (117)= Z ( bJ+ j;mj )� bJ+ j;mj d3x= Z ( j;mj )� bJy+ bJ+ j;mj d3x using de�nition of adjoint,= Z  �j;mj bJ� bJ+ j;mj d3x using bJy+ = bJ�= Z  �j;mj (bJ2 � bJ2z � �h bJz) j;mj d3xusing the identity bJ� bJ+ = bJ2 � bJ2z � �h bJz= �h2 [j(j + 1)�mj(mj + 1)℄ Z  �j;mj j;mj d3xsine  j;mj is an eigenstate of bJ2 and bJz= �h2 [j(j + 1)�mj(mj + 1)℄ sine the eigenstate is normalised.(118)leading to N = �h [j(j + 1)�mj(mj + 1)℄1=2 (119)A similar argument an be arried out for the state one step down the ladder, bJ� j;mj , giving�nally for the normalised eigenstates,bJ� j;mj = �h [j(j + 1)�mj(mj � 1)℄1=2  j;mj�1 (120)The matrix elements for the raising and lowering operators then follow:16(J�)m0j ;mj � Z  �j;m0j bJ� j;mj d3x= �h [j(j + 1)�mj(mj � 1)℄1=2 Z  �j;m0j j;mj�1 d3xsine  j;mj is an eigenstate of bJ2 and bJz= �h [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1sine the eigenstates are orthonormalised. (121)15By using the notation J and j;mj we are emphasising that the �nal expressions are generally valid and an beproved so by using the Dira formalism, although the integrals only have meaning for orbital angular momentumand the eigenstates of bL2 and bLz,  j;mj = Yj;mj , with the identi�ations j = ` and mj = m`.16The states on the j�ladder,  j;mj are orthonormal as we know in general for eigenstates of Hermitian operatorsand as we have seen expliitly for eigenstates of orbital angular momentum:Z  �j;m0j j;mj d3x = Z Y �j;m0jYj;mj d3x = Æm0j ;mj22



We are now in a position to �nd the matrix elements of the angular momentum operators bJxand bJy from those of bJ� using bJ� � bJx � i bJy; (122)giving for bJx and bJy, bJx = 12 � bJ+ + bJ�� ; (123)bJy = 12i � bJ+ � bJ�� : (124)The result, despite its ompliated appearane, is very simple when evaluated for individualases:(Jx)m0j ;mj = �h2 n[j(j + 1)�mj(mj + 1)℄1=2 Æm0j ;mj+1 + [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1o(125)(Jy)m0j ;mj = �h2i n[j(j + 1)�mj(mj + 1)℄1=2 Æm0j ;mj+1 � [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1o(126)Sine the states on the j�ladder are eigenstates, their matrix representations are diagonal:(Jz)m0j ;mj = �hmj Æm0j ;mj (127)(J2)m0j ;mj = �h2 j(j + 1) Æm0j ;mj (128)The hard work is now omplete: we have found general expressions for all the matries rep-resenting the angular momentum operators in Heisenberg's matrix quantum mehanis.17 Theenormous power of the methods used should be appreiated: without knowing anything aboutthe physial nature of spin, exept that it is a form of angular momentum giving the magi mul-tipliity 2 and suggesting j = 1=2, we are now in a position to write down expliit expressionsfor the spin operators and the wave funtions desribing the quantum mehanis of the spindegrees of freedom of partiles ranging from eletrons to quarks.APPENDIX B: MATRIX ELEMENTS OF ANGULAR MOMENTUMOPERATORS - THE CASES j = 1=2 & j = 1.Using the general expressions obtained above in equations (26) to (29), we now list the �rsttwo sets of matrix operators representing the abstrat quantum mehanial operators bJ:j = 12 ; mj = �1=2;+1=2 The matries are (2j + 1)� (2j + 1) = 2� 2�dimensional:Jx =  (Jx)1=2;1=2 (Jx)1=2;�1=2(Jx)�1=2;1=2 (Jx)�1=2;�1=2 ! = �h2  0 11 0 ! (129)Notie how the diagonal elements of the matrix are zero beause the kroneker deltas requirem0j = mj � 1 6= mj . Similar onsiderations apply to Jy, giving:Jy =  (Jy)1=2;1=2 (Jy)1=2;�1=2(Jy)�1=2;1=2 (Jy)�1=2;�1=2 ! = �h2  0 �ii 0 ! (130)The diagonal matries are easily obtained as:Jz =  (Jz)1=2;1=2 (Jz)1=2;�1=2(Jz)�1=2;1=2 (Jz)�1=2;�1=2 ! = �h2  1 00 �1 ! (131)17In the proess we have solved a huge and sophistiated problem in the mathematial theory of groups: wehave found all the irreduible representations of the orthogonal group in three dimensions, the rotation groupO(3). 23



J2 =  (J2)1=2;1=2 (J2)1=2;�1=2(J2)�1=2;1=2 (J2)�1=2;�1=2 ! = 3�h24  1 00 1 ! (132)j = 1; mj = �1; 0;+1 The matries are (2j + 1)� (2j + 1) = 3� 3�dimensional:Jx = 0B� (Jx)1;1 (Jx)1;0 (Jx)1;�1(Jx)0;1 (Jx)0;0 (Jx)0;�1(Jx)�1;1 (Jx)�1;0 (Jx)�1;�1 1CA = �hp2 0B� 0 1 01 0 10 1 0 1CA (133)Again the diagonal elements of the matrix are zero beause the kroneker deltas require m0j =mj � 1 6= mj; but they also require the elements 2 steps away from the diagonal to vanish.Similar onsiderations apply to Jy, giving:Jy = 0B� (Jy)1;1 (Jy)1;0 (Jy)1;�1(Jy)0;1 (Jy)0;0 (Jy)0;�1(Jy)�1;1 (Jy)�1;0 (Jy)�1;�1 1CA = �hp2 0B� 0 �i 0i 0 �i0 i 0 1CA (134)The diagonal matries are easily obtained as:Jz = 0B� (Jx)1;1 (Jz)1;0 (Jz)1;�1(Jz)0;1 (Jz)0;0 (Jz)0;�1(Jz)�1;1 (Jz)�1;0 (Jz)�1;�1 1CA = �h 0B� 1 0 00 0 00 0 �1 1CA (135)J2 = 0B� (J2)1;1 (J2)1;0 (J2)1;�1(J2)0;1 (J2)0;0 (J2)0;�1(J2)�1;1 (J2)�1;0 (J2)�1;�1 1CA = 2�h2 0B� 1 0 00 1 00 0 1 1CA (136)That these matries have all the properties required of angular momentum operators an nowbe heked expliitly. Thus, for the spin-1/2 matries it is easy to hek that their ommutatorsare preisely the same as those of the angular momentum operators. Thus we �nd anotherway to represent operators in QM: instead of using di�erential operators, Heisenberg's QM usesmatries, and the failure of some operators to ommute is here realised through the well knownorresponding property of matries. For angular momentum there is a partiular simpli�ation:the matries are �nite dimensional so that there is also a �nite number of eigenstates. 18

18Compare with the ase of the Hamiltonian operator for the in�nite square well or the harmoni osillatorwhere there is an in�nity of eigenstates and therefore the matries would be in�nite-dimensional.24



APPENDIX C: CLASSICAL TREATMENT OF SPIN PRECESSIONIN A MAGNETIC FIELD. 19(C.1) Energy of a magneti dipole in a magneti �eld.An orbiting harged partile or a spinning partile possesses a magneti momentM, whihan be pitured as a tiny bar magnet with the vetorM pointing from the South to the Northpole. In Figure 10 we plae this dipole in a uniform magneti �eld B, whose diretion we hooseas the z�axis. Even though isolated magneti monoples do not seem to our in nature, amagneti dipole an be thought of as a North pole with a magneti `harge' +m separated bya distane 2r from a South pole with a magneti `harge' �m. The dipole moment is thenM = m�(the separation)= 2mr or, taking the vetor separation 2r to point from S to N,M = 2m r (137)If our dipole is at an angle � to the uniform magneti �eld B = (0; 0; Bz) we an �nd the foreexerted by the �eld on eah monopole from a law exatly like that for eletri harges in aneletri �eld: just as an eletri harge q in an eletri �eld �z experienes a fore Fz = q�z, soa monopole of magneti harge m experienes a fore Fz = mBz. These fores, ating in thediretion of the �elds (hosen as the z�diretion), an be derived from potentials (ie. potentialenergies), Eele = �q�zz gives a fore Fz = ��Eele�z = q�z (138)Emag = �mBzz gives a fore Fz = ��Emag�z = mBz (139)Taking the origin of oordinates at the entre of the dipole, we an now �nd its total potentialenergy in the �eld by summing up the energies of the North pole situated at z = r os � and theSouth pole situated at z = �r os �:Emag = E+m +E�m= �mBzr os � � (�m)Bz(�r os �)= �(2mr) os �Bz= �(M os �)Bz where the dipole moment is M = 2mr= �M:B (140)where, in the last step we reognised � as the angle between the vetors B and M. Thisexpression is atually also valid in an inhomogeneous �eld and is used in setion 9 of the textto obtain the fores ating on the dipole in the Stern-Gerlah experiment.
19I use the notation L throughout this Appendix beause all lassial angular momentum is orbital angularmomentum. However all the results arry over to quantum mehanis provided due are is taken, so they applyboth to orbital, L, and spin, L ! S, angular momentum. To onvert the equations to spin we need only makethe replaements L ! S, ` ! s (s = 1=2 for spin 1/2), m` ! ms (ms = �1=2 for spin 1/2), and the Larmourfrequeny is di�erent, !L ! !s; the gyromagneti ratio is represented by the same symbol, , for both ases, buthas di�erent values,  = �B=�h for orbiting eletrons,  = gs�B=�h � 2�B=�h for spinning eletrons and  = gs�N=�hfor neutrons and protons. 25



(C.2) Dynamis of a dipole in a uniform magneti �eld.We begin with a quik and dirty derivation of the lassial law for angular motion:20 giventhe angular momentum vetor, L = r � p, let us �nd its equation of motion using Newton'sseond law: dpdt = F where p = mdrdt (141)Taking the time derivative of the angular momentum,dLdt = ddt(r� p)= drdt � p+ r� dpdt= 1m(p� p) + r� F using Newton II= r� F (142)In the penultimate step we reognised that the momentum is mass times veloity, ie. p =mdr=dt; the result is the term with p� p = 0 used to obtain the last line. The right hand sideis essentially the moment of the fore ating on the partile whih is known as the torque �,dLdt = r� F � � (143)In Figure 11 we show this dipole in a uniform magneti �eld B, whose diretion we hoose asthe z�axis. The magneti moment experienes a torque � given by (see Figure 12):� =M�B (144)First let us see how this result is obtained. If we plae our dipole at an angle � to a uniformmagneti �eld B we an �nd the torque exerted by the �eld from the law exatly like thatfor eletri harges in an eletri �eld: the fore on a monopole harge �m is �mB. Only theomponents of these fores perpendiular to the dipole ontribute to its rotation; the omponentsalong the dipole (ie. along r) balane exatly in a uniform �eld. In our Figure 11 the the foresat antilokwise on both poles, giving a total torque, in the antilokwise sense,� = 2mrB sin � =MB sin �; (145)where we used M = 2mr. From the �gure we notie that this sense of rotation is also thediretion of the vetor ross produtM�B; moreover this ross produt has the magnitude ofthe torque sine the angle between dipole moment and magneti �eld is �. Hene we arrive atthe general result quoted above for the torque, whih we now apply by hoosing the z�axis tolie along the diretion of the magneti �eld, B = (0; 0; Bz),� = M�B (146)= � L�B for an orbiting e� (147)= � (Ly;�Lx; 0)Bz for an orbiting e� (148)This torque learly auses a preession about the z�axis. 21 The angular frequeny of thispreession, the Larmour frequeny, is!L = �B�h Bz = Bz (149)20I am onsidering only a single point partile, whih is the ase of interest to us, but the results hold moregenerally.21A familiar example of preession is that of a top or gyrosope, where the role of the magneti �eld is playedby the gravitational �eld. 26



Proof 1: This is an elementary proof based on Figure 13 where, in a time dt, the dipole is seento rotate through an angle d' = !Ldt about the z�axis. The hange in angular momentum dLis then determined by the lever arm, whih is the projetion of the vetor L pependiular to thez�axis, L sin �: dL = ( lever arm)� (!Ldt)= L sin �!Ldt (150)This gives us an expression for the vetorial rate of hange of angular momentum whih anbe ompared diretly with that given in equation (148) to give the Larmour frequeny in equa-tion (149).Proof 2: Using Newton's seond law for rotational motion,dLdt = r� F = � (151)we obtain for the x� and y�omponents,dLxdt = �Bz Ly d2Lxdt2 = �Bz dLydt (152)dLydt = +Bz Lx d2Lydt2 = +Bz dLxdt (153)where we took the time derivative of eah equation to get the equations on the right. Now wean separate the two omponents of angular momentum by substituting for the right hand sidesof these equations from the original equations. We then reognise the result as lassial simpleharmoni osillator equations with the Larmour frequeny:d2Lxdt2 = �(Bz)2 Lx = �!2LLx (154)d2Lydt2 = �(Bz)2 Ly = �!2L Ly (155)Thus these two omponents of angular momentum rotate together about the z�axis with angularfrequeny !L, while the z�omponent remains onstant. A quantum mehanial treatment givenin Appendix D yields the same result, provided we replae the lassial angular momentumomponents Lx and Ly by their orresponding quantum mehanial expetation values hbLxi andhbLyi. These results will be used later when we disuss Eletron Spin Resonane (ESR) andNulear Magneti Resonane (NMR).
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APPENDIX D: QM TREATMENT OF SPIN PRECESSIONIN A MAGNETIC FIELD.We have seen that a lassial dipole in a magneti �eld preesses with the Larmour frequeny,and that the same applies to the QM ase of a magneti moment produed by orbital motion. Itmay not be so obvious that the same holds for a magneti moment produed by spin, espeiallyas eletron spin is so diÆult to understand lassially. Here we show how to study the problemusing QM, while at the same time illustrating the role of the Shr�odinger equation in spindynamis and showing that it is the quantum mehanial expetation values that preess. Inan applied magneti �eld the spin state � is altered by the fat that the energy hanges. Thisadds a term to the Hamiltonian whih ats only on the spin part of the wave funtion:bHs = �Ms:B = gs�BBz�h bSz = !s�h2�z (156)The spin part of the wave funtion �(t) is obtained by demanding it satisfy an appropriateTDSE whih takes aount of the above interation, and whih indues a time-dependene:�(t) =  1(t)2(t) ! where bHs�(t) = i�h��(t)�t (157)ie. !s �h2�z�(t) = !s �h2  1 00 �1 ! 12 ! = i�h _1_2 ! (158)Hene, !s�h2  1�2 ! = i�h _1_2 ! (159)ie. _1 = �i!s2 1 and _2 = +i!s2 2 (160)Hene the solutions, 1(t) = ae�i!st=2 and, 2(t) = be+i!st=2 a2 + b2 = 1 (161)where the onstants a and b are hosen to normalise the wave funtion and to satisfy the initial(t = 0) onditions. Two ases illustrate the relation between the lassial and quantum pitures:Case (1) Suppose the wave funtion is initially in the spin up eigenstate �+ of Sz,1(t = 0) = 1; 2(t = 0) = 0; hene a = 1; b = 0 and �(t) =  e�i!st=20 ! (162)Now, this remains an eigenstate of Sz, with eigenvalue +�h=2, for all times; all its expetationvalues are time-independent and so it is a stationary state with no preession:h bSzi = �y(t)Sz�(t) = �h2�y�z�= �h2 � e+i!st=2 0 � 1 00 �1 ! e�i!st=20 != �h2 � e+i!st=2 0 � e�i!st=20 !h bSzi = �h2 (163)
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h bSxi = �y(t)Sx�(t) = �h2�y�x�= �h2 � e+i!st=2 0 � 0 11 0 ! e�i!st=20 != �h2 � e+i!st=2 0 � 0e�i!st=2 !h bSxi = 0 (164)Similarly h bSyi = 0. Thus we have the perhaps surprising outome that a pure spin eigenstatedoes not preess at all, despite the fat that in the quasi-lassial pitures of the quantumrules the spin vetor doesn't point exatly in the z�diretion. However the expetation valuesorrespond preisely to the lassial values: if the lassial dipole is exatly aligned along thez�axis (allowed lassially) then not only does the spin have zero projetion in the x� andy�diretions, but there is no torque ating and therefore no preession.Case (2) Suppose the wave funtion is not a pure eigenstate but initially an equal mixture ofspin up and spin down:1(t = 0) = 2(t = 0) = 1p2 ; hene a = b = 1p2 ; and �(t) = 1p2  e�i!st=2e+i!st=2 ! (165)Sine this state is an equal mixture of spin up and spin down it is not surprising to disoverthat its average projetion on the z�axis is zero:h bSzi = �y(t)Sz�(t) = �h2�y�z�= �h2 � e+i!st=2 e�i!st=2 � 1 00 �1 ! e�i!st=2e+i!st=2 != �h2 � e+i!st=2 e�i!st=2 � e�i!st=2�e+i!st=2 !h bSzi = 0 (166)h bSxi = �y(t)Sx�(t) = �h2�y�x�= �h4 � e+i!st=2 e�i!st=2 � 0 11 0 ! e�i!st=2e+i!st=2 != �h4 � e+i!st=2 e�i!st=2 � e+i!st=2e�i!st=2 != �h4 �e+2i!st=2 + e�2i!st=2�h bSxi = �h2 os!st (167)Similarly, h bSyi = �h2 sin!st (168)Here we have the analogue of the lassial situation where the dipole lies in the x � y planewith zero z�omponent: the spin vetor will then preess around the z�axis. The QM exampleshows that indeed the expetation values have preisely these properties; moreover we now seethat the QM preession frequeny is !s � 2!L for an eletron.29


