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measuring the magneti
 moment of Ag atoms, had also shown the surprising o

urren
e of twostates where only an odd number, 2`+ 1 was expe
ted. Later we shall dis
uss this experimentin detail.Spin 
annot be understood 
lassi
ally. Several aspe
ts of spin angular momentum defyour attempts to understand it as the analogue of a top spinning about its axis - despite the fa
tthat one's mental image of spin is pre
isely this 
lassi
al system! The key to the diÆ
ulty lies inthe experimental fa
t, gleaned from many high energy s
attering experiments on ele
tron andpositron beams, that the ele
tron is as 
lose to Newton's idealised point parti
le as one 
ouldimagine:Ele
tron s
attering experiments are 
onsistent with: me = 0:51 MeV and re < 10�20 m.Taking the ele
tron as a sphere of mass me and radius re spinning about its 
entre with averagespeed v, and ignoring fa
tors of order 1, the angular momentum is,J � remev � �h2 ; implying, re � �h2mev � �h2me
 � 2� 10�13 m;whi
h is seven orders of magnitude greater than the experimental limit. To put this into the
ontext of 1921, 
ompare this with the sizes of atoms (around 10�10 m) and of the proton (10�15m); yet at the time it was already known that the ele
tron was very mu
h smaller than eitheratom or nu
leus. We 
an put this another way: the speed of rotation needed to explain themagnitude of the spin angular momentum for a parti
le as small as an ele
tron ex
eeds thespeed of light by seven de
ades: v � �h2mere > 2� 107 
:Thus, like many quantum phenomena, spin has a 
lassi
al analogue, but the analogue fails toprovide a quantitative explanation; it only gives us a 
onvenient mental pi
ture. Ele
tron spinappears to be an entirely quantum me
hani
al phenomenon. This statement is not, however,quite 
orre
t: in 1926 Dira
 presented his famous relativisti
 wave equation for the ele
tron - theDira
 equation - whi
h not only gives the 
orre
t spin angular momentum, but also an ex
ellentapproximation to its measured magneti
 moment and a predi
tion that the ele
tron has anantiparti
le, now 
alled the positron. Thus relativity in 
on
ert with QM plays an essential rolein the explanation of spin.Having 
on
luded that we 
annot pi
ture spin angular momentum simply as matter rotatingin some sort of orbit around the ele
tron's 
entre whose shape we 
ould hope to determine -perhaps by some sort of generalisation of a spheri
al harmoni
 - we now fa
e a dilemma: whatare the 
oordinates that play the role of (x; y; z) or (r; �; ') in des
ribing orbital angular momen-tum? Sin
e we do not know we must resort to an abstra
t approa
h via the angular momentumoperators for spin. This has already been a

omplished by our dis
overy that the 
ommutationrules for the angular momentum operators bJ provide for the possibility of spin angular momen-tum �h=2. We now 
ontinue along that path by following Heisenberg's matrix approa
h to QMin whi
h no referen
e need be made to the 
oordinates.(2) INTRODUCING HEISENBERG'S MATRIX MECHANICS.In his matrix version of QM Heisenberg a
hieved a form of the theory whi
h made referen
eonly to dire
tly measurable physi
al observables, the expe
tation values. The formalism isideally suited to the quantum me
hani
al study of angular momentum, espe
ially spin. Themost appropriate notation to use is Dira
's bra/ket formulation, but sin
e I wish to avoid2



introdu
ing yet more new material I shall justify and explain the steps in the argument in terms oforbital angular momentum and simply 
arry over the results dire
tly to spin angular momentum.However, all results 
an be proved in a general way without re
ourse to the integrations I use.Given the eigenfun
tions  j;mj of the angular momentum operators bJ2, and bJz, the gener-alised expansion theorem allows us to write, for any wave fun
tion 	j 
orresponding to a giventotal angular momentum j: 3 	j = jXmj=�j 
mj  j;mj : (1)Note that (a) we are 
onsidering a system with de�nite total angular momentum, 	j being aneigenstate of bJ2, so there is no sum over j here; (b) we do not mention any spatial dependen
efor the wave fun
tion be
ause for spin wave fun
tions we don't know whether there is any,and if there is we don't know what the 
oordinates are.4 The 
oeÆ
ients in the expansion arenormalised, jXmj=�j j
mj j2 = 1 (2)This follows from the normalisation of 	j and the orthonormality of the eigenstates  j;mj andshows that the j
mj j2 are probabilities. For a system in the state 	j a measurement of thez�
omponent of angular momentum will yield one of the eigenvalues �hmj with probabilityj
mj j2. After a measurement of the z�
omponent of angular momentum yielding the result mjthe wave fun
tion be
omes 	j after =  j;mj (3)and if the system is then left undisturbed, a subsequent measurement will yield the same resultmj with probability 1.Now we 
onsider the 
ase of orbital angular momentum, where the wave fun
tion does dependon the 
oordinates, and the expansion eigenfun
tions are just the spheri
al harmoni
s Yj;mj . Theexpe
tation value of any operator bA when the system is in the state 	j is then5h bA i = Z 	�j bA	j d3x (4)= Xm0j Xmj 
�m0j 
mj Z  �j;m0j bA j;mj d3x (5)= CyAC (6)(a) The expansion 
oeÆ
ients have been assembled into a (2j +1)�dimensional 
olumn ve
tor,C - you 
an think of the entries as the 
omponents of the original wave fun
tion 	j in the basisof eigenstates  j;mj : C = 0BBBBBBB� 
j
j�1......
�j
1CCCCCCCA Cy = ( 
�j 
�j�1 : : : : : : 
��j) (7)3Stri
tly speaking, we should say the total angular momentum is �hpj(j + 1), but we shall often lapse intothis shorthand. In a similar way we refer to spin 1/2 or �h=2 instead of �hp1=2(1=2 + 1) = �hp3=2.4This is where the Dira
 formulation 
omes into its own. The states are represented by the kets jji whi
h areindependent of the 
oordinates, whatever they may be.5We use the notation bA for abstra
t quantum me
hani
al operators, A for the matri
es representing them and(A)a;b � Aa;b for the a; b element of the matrix. Bold fa
ed symbols without a hat denote 
olumn ve
tors, C. InDira
 notation the right hand side of eq (4) is hjj bAjji, while the integral in eq. (5) is hj;m0j j bAjj;mji,3



The ve
tor C tells us everything we 
an know about the wave fun
tion 	j and plays the role ofthe wave fun
tion in matrix me
hani
s, in
luding the normalisation,CyC = jXmj=�j j
mj j2 = 1: (8)(b) Similarly, the (2j+1)� (2j+1) matrix A 
ontains all the information about the expe
tationvalue of bA for all possible situations, ie. for any possible wave fun
tion 	j, now represented bythe ve
tor C; the matrix elements of A are:Aab � (A)m0jmj = Z  �j;m0j bA j;mj d3x (9)We 
an also show that the rules of matrix multipli
ation apply, ie. the matrix representationof the operator bA bB is indeed the produ
t AB of the matri
es representing bA and bB separately.One 
onsequen
e of this is that if a set of operators, su
h as the angular momentum operators,satisfy a set of 
ommutation relations then so do the matri
es representing them.An important spe
ial 
ase o

urs when the eigenfun
tions used in the above are eigenstatesof the operator bA itself, for example with bA = bJz,bJz  j;mj = �hmj  j;mj (10)where the eigenvalue is �hmj In that 
ase the matrix representing bJz is diagonal:(Jz)m0jmj = Z  �j;m0j bJz j;mj d3x= �hmj Z  �j;m0j  j;mj d3x for eigenstates of bJz;= �hmj Æm0j ;mj (11)where, in the last step, we used the orthonormality of angular momentum eigenstates. Similarly,for the bJ2 operator, its matrix representation is not only diagonal, but simply a multiple of theunit matrix: J2m0jmj = �h2j(j + 1) Æm0j ;mj (12)In its full glory the Jz matrix looks like this:Jz = 0BBBB� (Jz)j;j (Jz)j;j�1 : : : (Jz)j;�j(Jz)j�1;j (Jz)j�1;j�1 : : : (Jz)j�1;�j... ... ... . . .(Jz)�j;j (Jz)�j;j�1 : : : (Jz)�j;�j 1CCCCA = �h 0BBBB� j 0 : : : 00 j � 1 : : : 0... ... ... . . .0 0 : : : �j 1CCCCA (13)and the J2 matrix like this: J2 = �h2j(j + 1) 0BBBB� 1 0 : : : 00 1 : : : 0... ... ... . . .0 0 : : : 1 1CCCCA (14)
To summarise: All the 
onsequen
es of quantum me
hani
s 
an be obtained from its ma-trix formulation: all information about the wave fun
tion is 
ontained in the 
olumn ve
tor C,whi
h is hen
eforth known as the wave fun
tion and whi
h is normalised,CyC = 1: (15)4



All operators are represented by matri
es A; measurements yield only expe
tation values whi
hare 
al
ulated from matrix produ
ts su
h as:h bAi = CyAC (16)The matrix A is diagonal in a basis of eigenstates of bA, the diagonal elements being the eigen-values of the operator. Finally noti
e that the general wave fun
tion ve
tor C is not itself aneigenve
tor of the matrix A, re
e
ting the fa
t that 	j is not an eigenstate but a linear 
om-bination of eigenstates  j;mj ; however, if we take 	j to be an eigenstate  j;mj , then all the 
'svanish ex
ept 
mj = 1. The wave fun
tion would then be represented by the 
olumn ve
tor withzeros in every position ex
ept the mj�th,C = 0BBBBBBBBB�
00...1...0
1CCCCCCCCCA (17)and it would be an eigenve
tor of the matrix Jz:JzC = �hmj C (18)The key point for us is that this formalism is essential when one deals with purely quantumphenomena where, as in the 
ase of spin, it is not known what the appropriate variables, or
oordinates a
tually are.(3) j � s = 1=2: MATRICES FOR THE SPIN-1/2 OPERATORS.At this stage we have nearly all the ne
essary equipment to write down the matri
es rep-resenting the angular momentum operators for any value of j. These matri
es will obey the
ommutation relations of the abstra
t operators they represent, just as do the di�erential op-erators �i�h(y�=�z � z�=�y), et
. used previously to represent the orbital angular momentumoperators. When we are talking about the spe
ial 
ase of orbital angular momentum we knowwhat degrees of freedom are involved - (�; ') - but for spin we have no idea, and so the onlypossibility open to us is to use the matrix representation. This is why the abstra
t approa
hto the angular momentum operators is so useful - indeed indispensable. In this se
tion we willobtain these operators for spin-1/2 in as elementary way as possible; for higher values of j thismethod would be
ome impossibly 
umbersome. In Appendi
es A & B we give a systemati
 gen-eral method for �nding the matri
es for any j whi
h is quite elementary but involves a multitudeof subs
ripts due to this generality. I re
ommend that you look through it after reading thisse
tion simply to 
onvin
e yourself that it 
an be done dire
tly.Our strategy here will be to 
onstru
t the 2�2 Hermitian spin-1/2 matri
es by requiring thatthey satisfy the angular momentum 
ommutation relations. We begin with the two diagonalmatri
es Jz = Sz and J2 = S2, whi
h we have already found in eqs. (13) and (14):Sz = �h2  1 00 �1 ! S2 = 3�h24  1 00 1 ! (19)where the fa
tor in front of the S2 matrix is �h2j(j + 1) with j � s = 1=2. We now write the asyet unknown 
omplex matri
es Jx = Sx and Jy = Sy asSx = �h2  a b
 d ! Sy = �h2  a0 b0
0 d0 ! (20)5



Step 1: First we show that the two matri
es have no diagonal elements, a = d = a0 = d0 = 0by demanding that they satisfy the 
ommutation relations [Sy; Sz℄ = i�hSx and [Sz; Sx℄ = i�hSy:[Sy; Sz℄ = i�hSx (21)ie. ��h2�2 ( a0 b0
0 d0 ! 1 00 �1 ! �  1 00 �1 ! a0 b0
0 d0 !) = i�h22  a b
 d !hen
e, �h24 ( a0 �b0
0 �d0 ! �  a0 b0�
0 �d0 !) = i�h22  a b
 d !or, 
an
elling �h2=2,  0 �b0
0 0 ! = i  a b
 d ! (22)Hen
e, equating individual 
omponents of the matri
es,a = 0; d = 0 and � b0 = ib; 
0 = i
 (23)To see the 
onsequen
es of the 
ommutator[Sz; Sx℄ = �[Sx; Sz℄ = i�hSy (24)all we need do is noti
e that the 
al
ulation goes pre
isely as the one above ex
ept for theinter
hange x $ y, ie. of primed and unprimed symbols, and an additional minus sign on theleft. The result is therefore:a0 = 0; d0 = 0 and b = ib0; �
 = i
0 (25)Putting all these results together we now have,a = 0; d = 0; a0 = 0; d0 = 0 and b0 = �ib; 
0 = i
 (26)so that the matri
es are o�-diagonal and 
an be expresssed in terms of only two unknownnumbers b and 
, Sx = �h2  0 b
 0 ! Sy = �h2  0 �ibi
 0 ! (27)Step 2: The penultimate step is to impose the remaining 
ommutation relation,[Sx; Sy℄ = i�hSz (28)ie. ��h2�2 ( 0 b
 0 ! 0 �ibi
 0 ! �  0 �ibi
 0 ! 0 b
 0 !) = i�h22  1 00 �1 !hen
e, �h24 ( ib
 00 �ib
 ! �  �ib
 00 ib
 !) = i�h22  1 00 �1 !or, after 
an
elling i�h2=2,  b
 00 �b
 ! =  1 00 �1 ! (29)Hen
e, equating individual 
omponents of the matri
es,b
 = 1 (30)6



Step 3: The �nal step is the phyi
al requirement that Sx and Sy 
orrespond to physi
alobservables with real expe
tation values, ie. that they be Hermitian matri
es, 6Syx � (S�x)T = Sx Syy = Sy (31)Thus, for Sx:  0 b
 0 !y =  0 
�b� 0 ! =  0 b
 0 ! (32)whi
h immediately tells us that the parameters are 
omplex 
onjugates of ea
h other,
 = b� (33)This 
ondition also ensures that Sy is Hermitian, so there is no further information to be gleaned.Combining our two relations for b and 
 then yieldsjbj2 = j
j2 = 1 (34)The general solution is b = ei�; 
 = e�i�; (35)where � is a 
onstant real phase angle whi
h has no physi
al 
onsequen
es. We are thereforefree to 
hoose the simplest solution, � = 0; the physi
s would be the same for any other 
hoi
e,b = 
 = 1 (36)We �nally have the matrix representation for the spin-1/2 operators:Sx = �h2  0 11 0 ! Sy = �h2  0 �ii 0 ! Sz = �h2  1 00 �1 ! S2 = 3�h24  1 00 1 !(37)

6Beware: only if operators are being represented by matri
es does the adjoint operation (the dagger) 
orre-spond to the 
omplex 
onjugate transpose operation; for representation by di�erential operators it 
orrespondsto 
omplex 
onjugation and turning the a
tion from operating on  to the right into operating on  � to the leftin expe
tation values. 7



(4) PAULI MATRICES & SPIN WAVE FUNCTIONS FOR j � s = 1=2.Sin
e spin does not emerge from the quantum me
hani
s of the S
hr�odinger equation, it hasto be grafted on as an additional postulate: the wave fun
tion of a parti
le with spin is a produ
tof the spatial wave fun
tion, 	(r; t) whi
h satis�es the time dependent S
hr�odinger equation,and a spin wave fun
tion, �spin whi
h is a (2j+1)�
omponent ve
tor obtained from the matrixformalism:7 	total = 	(r; t)�spin (38)This is not to say that QM is unable to in
orporate spin into the theory in a uni�ed way; themissing ingredient is relativity: the S
hr�odinger equation is non-relativisti
. Shortly after theS
hr�odinger equation was �rst introdu
ed Dira
 published his relativisti
 wave equation for theele
tron - the Dira
 equation - whi
h not only gives the 
orre
t spin angular momentum, butalso an ex
ellent approximation to its measured magneti
 moment and a predi
tion that theele
tron has an antiparti
le. Relativisti
 wave equations also exist for other values of spin. In theDira
 equation the wave fun
tion 
ontains all three ingredients in a uni�ed way: the spa
e-timedependen
e, the spin dependen
e and the antiparti
le wave fun
tion.For spin-1/2, we have seen that the angular momentum operators bJ, now 
alled bS for `spin',are represented by 2� 2 Hermitian matri
es Si, given by the Pauli matri
es �i:Si = �h2 �i; i = 1; 2; 3 (or, in an often used equivalent labelling, i = x; y; z); (39)where: �1 = �x =  0 11 0 ! �2 = �y =  0 �ii 0 ! �3 = �z =  1 00 �1 ! (40)We emphasise again that the matri
es satisfy pre
isely the same 
ommutation relations as thequantum me
hani
al angular momentum operators themselves:for the QM operators: [ bSx; bSy℄ = i�h bSz; for the matri
es: [Sx; Sy℄ = i�hSz (41)In fa
t, as we saw in the previous se
tion, these matri
es 
an be dis
overed by simply seeking theHermitian 2� 2 matri
es satisfying the 
ommutation relations - the answer is unique. Anotheruseful way to look at the Pauli matri
es is that any Hermitian 2� 2 matrix 
an be written as alinear 
ombination of Pauli matri
es and the unit matrix,I = �0 =  1 00 1 ! (42)The eigenve
tors (or eigenstates), �+ and ��, of the diagonal matrix Sz = �h=2�z are inter-preted as quantum states with de�nite values of the z�
omponent of spin; these values are theeigenvalues �hms = +�h=2 and �hms = ��h=2. To �nd these eigenstates we apply a systemati
pro
edure, although the result is fairly obvious:�+ =  10 ! and �� =  01 ! (43)We are using the notation � in the 
ase of spin-1/2 for the 
olumn ve
tors denoted C in thegeneral dis
ussion of se
tion 2.7A
tually the situation is a little more 
ompli
ated: when a spinning parti
le is subje
ted to a time-dependentmagneti
 intera
tion the spin part be
omes time-dependent. This is a
hieved through having time-dependent
oeÆ
ients a = a(t) and b = b(t) in the expansion theorem for �spin in eqs. (51) & (52). See Appendix D for aworked example. 8



Proof: The requirement that � be an eigenstate of Sz is:Sz � = �h2��; (44)where, although we already know that the eigenvalues of Sz 
orrespond to � = �1, we shall�nd it 
onvenient to a
tually 
on�rm this by 
al
ulation. Now the most general form for anynormalised spin-1/2 wave fun
tion is� =  ab ! with jaj2 + jbj2 = 1: (45)Our task is to �nd a; b and �. Using the known form for the Sz matrix, the requirement that �be an eigenstate of Sz be
omes:Sz � = �h2�� = �h2� ab != �h2  1 00 �1 ! ab != �h2  a�b ! (46)Equating the elements of 
olumn ve
tors in the �rst and last lines and 
an
elling �h=2, we �nd:a� = a (47)b� = �b (48)These two equations are 
learly in
onsistent if both a and b are non-zero; but they 
an be sati�edby taking one to be zero. This gives two possibilities,either b = 0 a 6= 0 and therefore � = +1and normalising, a = 1or a = 0 b 6= 0 and therefore � = �1and normalising, b = 1 Q.E.D.As be�ts eigenstates of a Hermitian operator with di�erent eigenvalues, they are orthonormal,ie. both normalised and orthogonal:�y��� = 1 and �y��� = 0 (49)Sin
e S2 
ommutes with Sz they are also eigenstates of S2 with 
ommon eigenvalue 3�h2=4:Sz �� = ��h2 �� and S2 �� = 34�h2 �� (50)All these equations 
an be 
he
ked out expli
itly by using the matri
es for the spin operators,and you should do this for yourself. Moreover you 
an see that the Expansion Theorem holdsbe
ause any 2-dimensional ve
tor, �, 
an be written as a linear 
ombination of the two unitve
tors �� given in eq. (43): 8 � = a�+ + b �� (51)8This is a spe
ial 
ase of equation (1) for spin-1/2, with spin eigenvalues j = s = 1=2 andmj = ms = �1=2, andthe general wave fun
tion C be
omes the general two-
omponent ve
tor, now 
alled �, with 
1=2 = a; 
�1=2 = b.9



� =  ab ! �y = ( a� b�); with normalisation: Pms j
ms j2 = jaj2 + jbj2 = 1 (52)In general the state � is not an eigenstate of any of the spin operators. This is just like the
ase of states obtained from linear 
ombinations of energy eigenstates: they, too, are not eigen-states of the Hamiltonian operator. The 
ase of spin is so mu
h simpler be
ause the spa
e is�nite-dimensional (2-D for spin-1/2) and so there are always only a �nite number eigenstatesand terms in the expansion theorem. However the measurement postulate is the same:Measurement Postulate: For a spin-1/2 parti
le in a general state � given above, the pos-sible out
ome of a measurement of the z�
omponenet of spin is one of the eigenvalues ��h=2(ie. ms = �1=2), with respe
tive probabilities jaj2 and jbj2. If say, a measurement yields avalue ms = +1=2, then the wave fun
tion `
ollapses' to the eigenstate �after = �+. Sin
e thisis an eigenstate of Sz, a subsequent measurement will yield the same value ms = +1=2 withprobability 1. We will shortly explore these 
on
epts using the Stern-Gerla
h experiment as themethod for preparing spin states and measuring spin 
omponents.(5) ROTATED SPIN OPERATORS & THEIR EIGENFUNCTIONS.Note: The following derivation is a fairly general one leading to the general result, eq. (70). Wewill a
tually only use the spe
ial 
ase, eq. (72) in dis
ussing the Stern-Gerla
h experiment. Thisis derived separately in Se
tion 6 by a more elementary method, so you may skip the remainderof this se
tion if you wish.As a preparation for our dis
ussion of the Stern-Gerla
h experiment we now ask the followingquestion: Suppose we prepare a spin-1/2 system in an eigenstate of Sz and then subsequentlymeasure the 
omponent of spin in some other dire
tion; what are the possible out
omes? Anequivalent way to pose this question is: What are the eigenstates of the spin operator 
orre-sponding to a dire
tion spe
i�ed by the unit ve
tor n? Be
ause the spin operator is a ve
tor its
omponent along n is simply the proje
tion,Sn = n:S and we seek the �0� for whi
h Sn �0� = ��h2 �0� (53)For simpli
ity we only 
onsider the 
ase where the ve
tor n lies along the dire
tion obtained byrotating the z�axis by an angle � about the y�axis. If we 
all this the z0�axis, and the rotatedx�axis perpendi
ular to it the x0�axis, then we are just asking for the new spin operators inthe new 
oordinate system (x0; y0; z0):
AAAAAAA

AK
��������
����

AAU
z0

x0
������	x

- y = y0
6z

� �
Figure 1: Pi
turing the rotation byangle � about the y�axis.
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Sin
e S transforms as a ve
tor the �gure shows that the relation between new and old matri
esis: Sx0 = Sx 
os � � Sz sin � (54)Sy0 = Sy (55)Sz0 = Sz 
os � + Sx sin � (56)so that the new matri
es be
ome,Sx0 = �h2  � sin � 
os �
os � sin � ! Sy0 = Sy = �h2  0 �ii 0 ! Sz0 = �h2  
os � sin �sin � � 
os � !(57)As a 
he
k on our algebra we note that � = 0 or � = 360Æ gives ba
k our original matri
es, while� = 90Æ just ex
hanges the x� and z�matri
es, with a sign 
hange on Sx0 , as we would expe
tsin
e the new x0�axis is now playing the role of the original �z�axis. This shows rather 
learlythat it's just a matter of our 
hoi
e onto what axis we de
ide to measure the proje
tion of thespin.Now we look for the eigenstates of the new Sz0 matrix. By the expansion theorem, eq. (51),these eigenstates, �0, must be normalised linear 
ombinations of the original eigenstates of Sz(eq. (43): �0 = a�+ + b�� =  ab ! with jaj2 + jbj2 = 1: (58)For this to be an eigenstate, with eigenvalue ��h=2 (where we already know � = �1 be
ause theparti
le has spin-1/2), Sz0 �0 = �h2��0: (59)Using our matrix representation for Sz0 and the expressions for the original eigenve
tors �0�,Sz0 �0 = �h2��0 = �h2� ab ! (60)= �h2  
os � sin �sin � � 
os � ! ab != �h2  a 
os � + b sin �a sin � � b 
os � ! (61)Equating the elements of 
olumn ve
tors in the �rst and last lines, 
an
elling �h=2 and 
olle
ting
oeÆ
ients of a and b, we �nd: a(�� 
os �) = b sin � (62)a sin � = b(�+ 
os �) (63)Dividing the equations gives a 
onsisten
y 
ondition leading to the expe
ted two eigenvalues:(�� 
os �)(�+ 
os �) = sin2 �; ie. �2 � 
os2 � = sin2 �; or �2 = 1; hen
e � = �1 (64)Considering ea
h 
ase in turn gives the two eigenstates �0+ and �0�, where we use the trig. iden-tities (1 � 
os �) = 2 sin2 �=2; (1 + 
os �) = 2 
os2 �=2; sin� = 2 sin �=2 
os �=2 :For � = +1 : ba = (1� 
os �)sin � = 2 sin2 �=2;2 sin �=2 
os �=2 = sin �=2;
os �=2 (65)11



For � = �1 : ba = �(1 + 
os �)sin � = � 2 
os2 �=2;2 sin �=2 
os �=2 = �
os �=2;sin �=2 (66)The magnitude of a in ea
h 
ase is obtained from the 
ondition that �0� be normalised:jaj2 + jbj2 = jaj2(1 + j ba j2) = 1 (67)For � = +1 : a = 
os �=2; b = sin �=2 (68)For � = �1 : a = sin �=2; b = � 
os �=2 (69)Finally we obtain the required eigenstates of Sz0 :�0+ =  
os �=2sin �=2 ! and �0� =  sin �=2� 
os �=2 ! (70)We 
an 
he
k our algebra by noting that we re
over the original Sz eigenstates �� for � = 0. Butby putting � = 2� we fail to re
over the original eigenstates, even 'though this 
orresponds to thesame point in spa
e as � = 0. This quite remarkable property is an entirely new phenomenon:the spin-1/2 wave fun
tions are not single-valued, but double-valued:�0�(� + 2�) 6= �0�(�)but, �0�(� + 4�) = �0�(�) (71)Finally we note the result we will apply to the double Stern-Gerla
h experiment:For � = �2 ; �0+ = 1p2  11 ! and �0� = 1p2  1�1 ! (72)A glan
e at Figure 1 will show that � = �=2 
orresponds to the new z�axis pointing along theold x�axis: thus Sz0 = Sx and so these eigenstates are eigenstates of Sz. In the next se
tion weshall obtain this result dire
tly without quite so mu
h algebra.If we had repeated the above analysis, but rotated by �� 
lo
kwise about the x�axis instead, wewould have found, Sx00 = Sx (73)Sy00 = Sy 
os �� � Sz sin �� (74)Sz00 = Sz 
os �� + Sy sin �� (75)so that the new matri
es be
ome,Sy00 = �h2  � sin �� �i 
os ��i 
os �� sin �� ! Sx00 = Sx = �h2  0 11 0 ! Sz00 = �h2  
os �� �i sin ��i sin �� � 
os �� !(76)The eigenstates of Sz00 would then be
ome:�00+ =  
os ��=2i sin ��=2 ! and �00� =  sin ��=2�i 
os ��=2 ! (77)Finally we obtain the eigenstates of Sy:For �� = �2 ; �00+ = 1p2  1i ! and �00� = 1p2  1�i ! (78)12



We see that �� = �=2 
orresponds to the new z�axis pointing along the old y�axis: thus Sz00 = Syand so these eigenstates are eigenstates of Sy. You should 
on�rm this last result by using themethod of the next se
tion to obtain it dire
tly without quite so mu
h algebra.(6) SPIN EIGENFUNCTIONS FOR QUANTIZATION ALONG THE x�AXIS:EIGENSTATES OF Sx.Given the eigenfun
tions, eq. (43), for spin quantised along the z�axis, we now wish to �ndthe eigenfun
tions for spin quantised along the x�axis. This is equivalent to asking for theeigenstates �0 of Sx, Sx �0 = �h2��0: (79)where, although we already know that � = �1 (be
ause we are des
ribing a spin-1/2 parti
le),we shall �nd it 
onvenient to a
tually 
on�rm this by 
al
ulation. Now the information we beginwith is that the eigenstates of Sz are given by eq. (43), so we 
an use the expansion theorem toexpress our unknown wave fun
tions �0 as a linear 
ombination, eqs. (51), (52):�0 = a�+ + b�� =  ab ! with jaj2 + jbj2 = 1: (80)and then use the matrix representation Sx given in eq. (37),Sx = �h2  0 11 0 ! (81)Putting these all together, the requirement that �0 be an eigenstate of Sx reads:Sx �0 = �h2��0 = �h2� ab != �h2  0 11 0 ! ab != �h2  ba ! (82)Equating the elements of 
olumn ve
tors in the �rst and last lines and 
an
elling �h=2, we �nd:a� = b (83)a = b� (84)Dividing the equations gives a 
onsisten
y 
ondition leading to the expe
ted two eigenvalues:�2 = 1 hen
e � = �1 (85)Sin
e a and b have the same magnitude for both eigenvalues, the 
ondition that �0� be normalisedrequires: jaj2 + jbj2 = 2jaj2 = 1; or, taking a real and positive, a = 1p2 (86)and therefore a = 1p2 b = � 1p2 for � = �1 (87)Finally we obtain the two eigenstates �0+ and �0�,�0� = 1p2(�+ � ��) (88)13



or, in expli
it form, �0+ = 1p2  11 ! and �0� = 1p2  1�1 ! (89)where the � denote eigenstates of Sx with eigenvalues ��h=2. It goes without saying that thesestates are still also eigenstates of S2 with the same eigenvalue 3�h2=4 as the original eigenstates�� of Sz. We shall see the physi
al signi�
an
e of all four of these states when we 
onsider thetriple Stern-Gerla
h experiment.(7) THE TRIPLE STERN-GERLACH EXPERIMENT.Before des
ribing the details of the Stern-Gerla
h experiment, we shall �rst abstra
t itsessen
e in order to dis
uss the theory of measurement in QM. The experiment 
an be thoughtof as a method for either measuring a 
omponent of the spin or of preparing an ensemble ofstates having one 
omponent of spin determined, ie. of preparing an eigenstate of Sz, Sx orwhatever. We represent the apparatus as a `bla
k box' into whi
h a beam of spin-1/2 parti
lesis inje
ted and from whi
h emerge two spatially separated beams: one with spin proje
tion alongthe measurement axis +�h=2; the other with ��h=2. Figure 2 illustrates two separate measure-ment experiments in whi
h an unpolarised beam of spin-1/2 parti
les enters the apparatus. We
an think of the in
oming beam as having a random mixture of all possible spin orientations:one experiment measures the z�
omponent; the other the x�
omponent. The two outgoingstates are spatially separated and exit in the pure eigenstates �� and �0� respe
tively.- -- �+��Sz - -- �0+�0�SxFigure 2: Abstra
t Stern-Gerla
h experiments, one measuring the z�
omponentof spin, the other the x�
omponent. Note that the outgoing beams have equalintensity one-half that of the in
oming beam.These illustrate the angular momentum quantization rule that for a spin-1/2 parti
le (the in-
oming parti
le) the only possible out
ome of a measurement of a 
omponent of the spin angularmomentum is one of the eigenvalues, +�h=2 or ��h=2. This is the �rst stage of the measurementpostulate of QM. Note how radi
ally di�erent the out
omes of these experiments are 
omparedwith our 
lassi
al expe
tation: sin
e the in
oming beam is unpolarised we expe
t the spins to beoriented randomly in all possible dire
tions, with proje
tions on the z-axis having a 
ontinuumof values lying between +�h=2 and ��h=2; instead we only measure two values, and any singleparti
le passing through the apparatus will exit either in one beam or the other, not anywherebetween the beams. Even more at varian
e with our 
lassi
al experien
e is that the very samein
oming beam going through the Sx measuring apparatus now seems to have only the maximumpossible x-axis proje
tions, ��h=2, a 
lear impossibility if they already have the maximum z-axisproje
tions as evin
ed by the Sz measuring experiment! From the quantum me
hani
al point ofview we have to a

ept that in the in
oming beam the spin proje
tion of an individual parti
le isnot known, only its probability. Thus it is only after a measurement or preparation that we 
ansay for 
ertain what it is, and then only at the moment of measurement, not before. If we aretempted to say, `Well, it really had the value we determined all along and we just didn't know ituntil we a
tually looked', then the fa
t that a similar measurement of the x-
omponent 
an only14



yield ��h=2 should 
ast doubt on this interpretation, sin
e now it seems it 
ould `really' have hada 
omponent in
onsistent with the value already determined. Thus it seems that a parti
le'sproperty depends on whi
h experiment we set up. We shall see this in the triple Stern-Gerla
hexperiment. Thus, just like the two-slit experiment, we have to think of an in
oming parti
leas being in neither one state �+ nor the other ��, but `in some sort of equal mixture of thetwo'; the physi
al meaning of this statement is that a measurement of the z-
omponent of spinfor an unpolarised beam will yield only one of the two eigenvalues of Sz, but with equal prob-ability. On
e the measurement is made, the wave fun
tion `
ollapses' into the appropriate state.9The double Stern-Gerla
h experiment enables us to illustrate the next stage of the mea-surement postulate. First 
onsider two Stern-Gerla
h experiments, both measuring the z�
omponentof spin. We now dis
ard one of the beams emerging from the �rst stage. This 
an be viewedas measuring the z�
omponent of spin and using this to prepare the system in the eigenstate�+, or as the `
ollapse' of the wave fun
tion into the state �+ as a result of the measurement(whi
h is the pro
ess of separating the in
oming beam and dis
arding the lower one). Sin
e thestate entering the se
ond stage has `
ollapsed' to the eigenstate �+ (or has been prepared inthat eigenstate) the result of the se
ond measurement is 
ertain: only one beam now exits these
ond, 
orresponding to spin up.- -- �+ ��Dis
ardedbeamSz - �+Sz
Figure 3: Double Stern-Gerla
h experiment illustrating the measurement pro
essin QM. Both measure the z�
omponent of spin, but only one beam emerging fromthe �rst is admitted into the se
ond.10The triple Stern-Gerla
h experiment illustrates several aspe
ts of the quantum measur-ing pro
ess and dramatises the 
onsequen
es of the expansion theorem in a most remarkableway. We now interpose between the two Sz experiments of the double Stern-Gerla
h apparatusa third experiment whi
h measures the x�
omponent, Sx:

- -- �+ ��Dis
ardedbeamSz -- �0+ �0�Dis
ardedbeamSx -- �+��Sz
9A subtle point about the wave fun
tion representing the unpolarised in
oming beam: we have not dealt withsu
h in
oherent states in this 
ourse, and so I have avoided writing down a wave fun
tion for it; but su
h stateshave the property that we 
an still predi
t the probabilities I am talking about in the text. The formalism usedfor these so-
alled mixed states is the density matrix formalism.10Sin
e there is nothing spe
ial about the symbol z, we 
ould equally well have illustrated the prin
iple withmeasurement of the x�
omponent. The same pi
ture would serve with the repla
ements: Sz ! Sx and �� ! �0�15



Figure 4: Triple Stern-Gerla
h experiment.The �rst and last stages measure the z�
omponent of spin, but the beam sele
ted from the�rst is now submitted to an Sx measurement and only one emergent beam is in its turn sub-mitted to the �nal stage, a se
ond Sz measurement. The intermediate measurement has nowin
uen
ed the out
ome of the last measurement and we see the phenomenon of regeneration:the down spin state dis
arded in the �rst stage reappears in the outgoing beam of the wholeexperiment, as if the intermediate measurement of Sx had `disturbed' the system and reintro-du
ed some down 
omponent. In equations, the sequen
e is as follows: the in
oming state is anunpolarised mixture of spin up and spin down with respe
t to any 
hosen axis; the z�axis isthe one 
hosen for the �rst stage measurement, so the spin up and down beams emerging fromthe Sz measurement are of equal intensity. Choosing to inje
t only the spin up beam into theSx measuring apparatus means that the in
oming state for this stage is, �+, whi
h, using theexpansion theorem we may write in terms of the Sx eigenstates,�+ = 1p2�0+ + 1p2�0� (90)Again there are only two beams emerging from the Sx measurement with equal intensity, fromwhi
h we sele
t the one in state �0+. This is the initial state for the �nal Sz measurement, whi
hwe again expand, but this time in terms of Sz eigenstates:�0+ = 1p2�+ + 1p2�� (91)Here we have the �nal out
ome: there are two equal intensity beams emerging from the �nalstage, with ea
h Sz eigenstate being present, despite the fa
t that the �rst stage of the experimenthad dis
arded the beam in the �� spin down state.Now we 
ome to a 
ru
ial point: one may wish to attribute the regeneration observed in thetriple Stern-Gerla
h experiment to the so-
alled `disturban
e' introdu
ed by the intermediateSx measurement; but in fa
t this is no disturban
e at all. We 
an show this by altering the lastexperiment by not ex
luding the Sx spin down beam, but allowing it also to enter the last Szmeasuring phase. The result is that only the spin up 
omponent emerges from the last stage:
- -- �+ ��Dis
ardedbeamSz -- ������ -�0+�0�Sx - �+Sz

Figure 5: Triple Stern-Gerla
h experiment without dis
arding the down 
ompo-nent at the intermediate stage. This shows that the intermediate stage introdu
esno `disturban
e' when no dete
tion o

urs there.In equations this is simply stated: the two beams exiting the Sz apparatus are re
ombinedwhen they enter the �nal stage, maintaining their 
oheren
e. Thus the beam entering the �nalstage is a linear superposition of equal intensity beams, with wave fun
tion�Szout = 1p2�0+ + 1p2�0�= �+ (92)16



where, in the last line, we re
ognise the 
ombination of Sx eigenstates as the spin up Sz eigenstate�+. Hen
e we 
on�rm that the Sx apparatus itself does not disturb the system. Rather thanthe 
ollapse of the wave fun
tion resulting from a disturban
e inside the Sx apparatus, it isa 
onsequen
e of a measurement being registered afterwards - in the 
ase of the triple Stern-Gerla
h experiment the measurement is the pro
ess of 
ompletely ex
luding the lower beamemerging from the Sx apparatus; the upper beam is not tou
hed at all and therefore su�ers nodisturban
e. The analogy with the two-slit experiment should be obvious: if we blo
k the beamfrom one slit altogether we lose the interferen
e pattern. Thus we see that the a
t of measurementintrodu
es a degree of de
oheren
e - the triple Stern-Gerla
h experiment des
ribed is an extreme
ase where one beam is 
ompletely destroyed, but one 
an imagine introdu
ing a 
ounter in thelower beam instead as one does in attempting to follow the path of the beams in the two-slitexperiment. Finally we note that the experiments des
ribed here are very 
losely related to thefamous Aspe
t et al experiments whi
h tested the Bell inequalities and 
on�rmed this apparentlystrange behaviour of the QM measurement pro
ess.
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(8) ATOMIC MAGNETIC MOMENTS & ATOMS IN A MAGNETIC FIELD.The purpose of the Stern-Gerla
h experiment is to measure the magneti
 moments of neutralatoms, so we begin by examining the magneti
 properties of a 
lassi
al atomi
 ele
tron of 
harge�e orbiting a nu
leus in a 
ir
le of radius r with speed v:
���	
6

r
M IAFigure 6: Magneti
 moment produ
ed by a 
urrent loop.The orbiting ele
tron produ
es a 
urrent I =
harge�(no. of 
ir
uits/se
) = (�e) � (v=2�r)
ir
ulating around a loop of area A = �r2, 
ausing a dipole magneti
 �eld just like that of atiny bar magnet oriented perpendi
ular to the orbital plane, with a magneti
 moment:M = IA = � ev2�r �r2 = � e2me mevr = � e2me L = ��BL�h = �
L (93)or in its full ve
torial form,M = ��BL�h = �
L for an orbiting e� (94)where 
 � �B=�h is the gyromagneti
 ratio and1 Bohr magneton � �B = e�h2me = 9:27 � 10�24 J T�1 (Joules per Tesla) (95)We have established an important result: be
ause the magneti
 moment is proportional to theangular momentum, any measurement of the magneti
 moment is at the same time a measure-ment of the angular momentum multiplied by the gyromagneti
 ratio. It turns out that this istrue whether we are talking about orbital or spin angular momentum or a 
ombination of both:the only di�eren
e resides in the numeri
al values.If we pla
e our atomi
 dipole in a magneti
 �eld it will experien
e a for
e, whi
h we 
anexpress as a potential energy:11Emag = �B:M (96)= 
B:L for an orbiting e� (97)= 
BzLz for an e� and z�axis along B (98)This term, with Lz ! bLz, is added to the Hamiltonian and, a
ting on an eigenstate of both bHand bLz, gives an additional energy to the eigenstate,Emag = 
�hm`Bz for an e� and z�axis along B (99)= �h!Lm` for an orbiting e� (100)11See Appendix C.1 and Figure 10 for a simple derivation. The negative gradient of this potential gives thefor
e F on the dipole. In general a for
e a
ting on the dipole will produ
e both linear and rotational motion - theformer is zero in a uniform �eld; the latter is 
aused by a torque, r � F 6= 0, whi
h is present even in a uniform�eld, 
ausing pre
ession of the dipole - see Appendix C.2 and Figures 11, 12, 13.18



Thus, we see that the energy 
orresponds to a 
hara
teristi
 frequen
y, the Larmour frequen
y,whi
h will appear as the resonant frequen
y of radiation needed to indu
e the angular momen-tum to 
hange by one unit of �h in magneti
 resonan
e experiments. This is also the frequen
ywith whi
h a 
lassi
al dipole pre
esses about the dire
tion of the magneti
 �eld - see AppendixC.2 and Figures 11, 12, 13, where we show that both the 
lassi
al 
omponents Lx and Ly pre
essabout the z�dire
tion of the magneti
 �eld with the Larmour frequen
y; and quantum me
han-i
ally it is the expe
tation values hbLxi and hbLyi whi
h pre
ess at this frequen
y- see Appendix D.(9) THE ZEEMAN EFFECT - EVIDENCE FOR AZIMUTHAL QUANTIZATIONAND FOR ELECTRONS IN ATOMS.Sin
e the appli
ation of a magneti
 �eld 
hanges the energy of orbiting ele
trons, it also hasan interesting e�e
t on spe
tra. Histori
ally this was the �rst eviden
e for angular momentumquantization as well as for the role of ele
trons in produ
ing atomi
 spe
tra. It also providedearly hints of angular momentum 1=2. We have shown that for an atomi
 ele
tron in a quantumstate labelled by the angular momentum quantum numbers `;m` the appli
ation of a magneti
�eld shifts the energy by�Emag = 
�hm`Bz with m` = �`;�`+ 1; : : : ` (101)= �h!Lm` (102)Now 
onsider two energy levels in an atom, one the ground state with ` = 0, the other with` = 1. In the absen
e of a magneti
 �eld the ` = 1 level is 3-fold degenerate: there are threestates, all with ` = 1, but with m` = �1; 0;+1, and all with the same energy. Thus there is onlyone spe
tral line at a frequen
y �0 
orresponding to the energy di�eren
e E1�E0 = h�0 betweenthe two levels. Now with an applied magneti
 �eld the ` = 0;m` = 0 and ` = 1;m` = 0 levelsremain un
hanged be
ause m` = 0 gives Emag = 0; but the two ` = 1;m` = �1;+1 levels shiftdown and up by ÆE = �h!L sin
e m` = �1. The result is three separate levels where one existedbefore: the magneti
 �eld has lifted the degenera
y and 
reated two additional spe
tral lineson either side of the original line. The three lines illustrated in Figure 7 
orrespond to thenormal Zeeman e�e
t. Spin and other aspe
ts of the magneti
 intera
tions in an atom lead to
ompli
ated Zeeman patterns known as the anomalous Zeeman e�e
t. The observation of theZeeman e�e
t was an important milestone in atomi
 physi
s be
ause it provided eviden
e for thequantization of angular momentum and for the ele
tron being in the atom and dire
tly involvedin the produ
tion of spe
tral lines: the splitting is both proportional to the applied magneti
�eld and the 
harge to mass ratio e=me. The measured splitting gave the same value for e=meas had been obtained in studies of ele
tron beams ( beta rays), providing a dire
t window intothe atom. The Zeeman e�e
t is widely used in astronomy to measure large magneti
 �elds instars.
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(10) THE STERN-GERLACH EXPERIMENT & ELECTRON SPIN.It was Otto Stern in 1921 who proposed to use the e�e
t of an inhomogeneous magneti
�eld on a magneti
 dipole to measure the magneti
 moments of atoms. If B = B(x; y; z) then,in addition to a torque the �eld will exert a net for
e on the dipole be
ause the little magnet'snorth and south poles are in slightly di�erent �elds. In all our 
onsiderations we �nd it most
onvenient to 
hoose the z�axis to lie along the dire
tion of the magneti
 �eld, B = (0; 0; Bz).As usual, the for
e is obtained from the gradient of the potential (see Appendix C.2 and Figure14 for a derivation): F = �rEmag (103)= r(M:B) (104)= r(MzBz) with z�axis along B (105)= Mz ��Bz�x ; �Bz�y ; �Bz�z � (106)In the Stern-Gerla
h experiment the magnet poles are shaped to produ
e a magneti
 �eld thatvaries rapidly in the z�dire
tion only, Bz = Bz(z), 12 so the for
e also a
ts in the z�dire
tion:F = (0; 0;Mz �Bz�z )= (0; 0;�
Lz �Bz�z ) 
lassi
al orbiting e� (107)= (0; 0;�
�hm`�Bz�z ) quantum me
hani
al orbiting e� (108)where, in the last step, we have introdu
ed the QM quantization rule for the z�
omponent oforbital angular momentum. The 1922 Stern-Gerla
h experiment was performed with a beam ofneutral 13 silver atoms, the inhomogeneous magneti
 �eld being produ
ed by one of the poleshaving a razor-sharp pointed fa
e. The details are shown in the a

ompanying Figures 8 & 9whi
h also show the original results. Sin
e the silver atoms' magneti
 moments are randomlyoriented in the in
ident beam, the 
lassi
al expe
tation was that there be a 
ontinuous range ofde
e
tions, re
e
ting the 
ontinuous distribution of Lz values in the beam. The QM predi
tion isthat a dis
rete set of de
e
tions should result from the quantization of orbital angular momentumwith 2` + 1 possibilities 
orresponding to m` = �`;�` + 1; : : : 0; : : : `, in
luding zero de
e
tionfor m` = 0. In fa
t no zero de
e
tion was seen and only 2 de
e
ted beams, one above and onebelow the expe
ted zero de
e
tion, in
onsistent with integral values of ` but suggesting insteadthe value 1=2 to give 2`+ 1 = 2.This experiment and many other hints from atomi
 spe
tra and the Zeeman e�e
t led tothe Gouds
hmidt-Uhlenbe
k suggestion in 1925 that in fa
t the ele
tron has an intrinsi
 spinangular momentum �h=2. The Stern-Gerla
h experiment on Ag and later ones on Cu, Au, Na,K, Cs and H �nds its explanation in the fa
t that all these atoms have 
losed ele
tron shellsplus one extra valen
e ele
tron. The 
losed shell 
ontributes a net zero angular momentum andthe valen
e ele
tron has zero orbital angular momentum, ` = 0, but 1/2 unit of spin angularmomentum. The atom as a whole therefore has a total angular momentum �h=2 due solely to the12In the experiment depi
ted in Figure 8 the beam travels along the y�dire
tion, with the �eld uniform alongthis dire
tion, although there is a small x�
omponent to the �eld whi
h does vary slightly with both x and z. Inpra
ti
e these e�e
ts 
an be seen as distortions in the shape of the outgoing beam seen at the dete
tor as shownin the �gure, but do not obs
ure the main e�e
t seen due to the z variation.13It is essential to use a neutral beam in this experiment otherwise the relatively weak de
e
tions due to themagneti
 dipole intera
tion would be 
ompletely masked by the large de
e
tions 
aused by a 
harged beam passingthrough a strong magneti
 �eld. 20





APPENDIX A: MATRIX ELEMENTS OF ANGULAR MOMENTUMOPERATORS - GENERAL EXPRESSIONS.We shall now �nd expressions for the matri
es representing the angular momentum operators.15We know that the operator bJ+ is the raising operator, generating from  j;mj with bJz eigenvalue�hmj, the next state up the ladder, bJ+ j;mj with eigenvalue �h(mj+1). But the state so generatedis not normalised and requires a normalising fa
tor N to be
ome so:bJ+ j;mj = N  j;mj+1 (116)where both  j;mj and  j;mj+1 are normalised eigenstates. Thus,Z j bJ+ j;mj j2 d3x = N2 Z j j;mj+1j2 d3x = N2 sin
e  j;mj+1 is normalised. (117)= Z ( bJ+ j;mj )� bJ+ j;mj d3x= Z ( j;mj )� bJy+ bJ+ j;mj d3x using de�nition of adjoint,= Z  �j;mj bJ� bJ+ j;mj d3x using bJy+ = bJ�= Z  �j;mj (bJ2 � bJ2z � �h bJz) j;mj d3xusing the identity bJ� bJ+ = bJ2 � bJ2z � �h bJz= �h2 [j(j + 1)�mj(mj + 1)℄ Z  �j;mj j;mj d3xsin
e  j;mj is an eigenstate of bJ2 and bJz= �h2 [j(j + 1)�mj(mj + 1)℄ sin
e the eigenstate is normalised.(118)leading to N = �h [j(j + 1)�mj(mj + 1)℄1=2 (119)A similar argument 
an be 
arried out for the state one step down the ladder, bJ� j;mj , giving�nally for the normalised eigenstates,bJ� j;mj = �h [j(j + 1)�mj(mj � 1)℄1=2  j;mj�1 (120)The matrix elements for the raising and lowering operators then follow:16(J�)m0j ;mj � Z  �j;m0j bJ� j;mj d3x= �h [j(j + 1)�mj(mj � 1)℄1=2 Z  �j;m0j j;mj�1 d3xsin
e  j;mj is an eigenstate of bJ2 and bJz= �h [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1sin
e the eigenstates are orthonormalised. (121)15By using the notation J and j;mj we are emphasising that the �nal expressions are generally valid and 
an beproved so by using the Dira
 formalism, although the integrals only have meaning for orbital angular momentumand the eigenstates of bL2 and bLz,  j;mj = Yj;mj , with the identi�
ations j = ` and mj = m`.16The states on the j�ladder,  j;mj are orthonormal as we know in general for eigenstates of Hermitian operatorsand as we have seen expli
itly for eigenstates of orbital angular momentum:Z  �j;m0j j;mj d3x = Z Y �j;m0jYj;mj d3x = Æm0j ;mj22



We are now in a position to �nd the matrix elements of the angular momentum operators bJxand bJy from those of bJ� using bJ� � bJx � i bJy; (122)giving for bJx and bJy, bJx = 12 � bJ+ + bJ�� ; (123)bJy = 12i � bJ+ � bJ�� : (124)The result, despite its 
ompli
ated appearan
e, is very simple when evaluated for individual
ases:(Jx)m0j ;mj = �h2 n[j(j + 1)�mj(mj + 1)℄1=2 Æm0j ;mj+1 + [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1o(125)(Jy)m0j ;mj = �h2i n[j(j + 1)�mj(mj + 1)℄1=2 Æm0j ;mj+1 � [j(j + 1)�mj(mj � 1)℄1=2 Æm0j ;mj�1o(126)Sin
e the states on the j�ladder are eigenstates, their matrix representations are diagonal:(Jz)m0j ;mj = �hmj Æm0j ;mj (127)(J2)m0j ;mj = �h2 j(j + 1) Æm0j ;mj (128)The hard work is now 
omplete: we have found general expressions for all the matri
es rep-resenting the angular momentum operators in Heisenberg's matrix quantum me
hani
s.17 Theenormous power of the methods used should be appre
iated: without knowing anything aboutthe physi
al nature of spin, ex
ept that it is a form of angular momentum giving the magi
 mul-tipli
ity 2 and suggesting j = 1=2, we are now in a position to write down expli
it expressionsfor the spin operators and the wave fun
tions des
ribing the quantum me
hani
s of the spindegrees of freedom of parti
les ranging from ele
trons to quarks.APPENDIX B: MATRIX ELEMENTS OF ANGULAR MOMENTUMOPERATORS - THE CASES j = 1=2 & j = 1.Using the general expressions obtained above in equations (26) to (29), we now list the �rsttwo sets of matrix operators representing the abstra
t quantum me
hani
al operators bJ:j = 12 ; mj = �1=2;+1=2 The matri
es are (2j + 1)� (2j + 1) = 2� 2�dimensional:Jx =  (Jx)1=2;1=2 (Jx)1=2;�1=2(Jx)�1=2;1=2 (Jx)�1=2;�1=2 ! = �h2  0 11 0 ! (129)Noti
e how the diagonal elements of the matrix are zero be
ause the krone
ker deltas requirem0j = mj � 1 6= mj . Similar 
onsiderations apply to Jy, giving:Jy =  (Jy)1=2;1=2 (Jy)1=2;�1=2(Jy)�1=2;1=2 (Jy)�1=2;�1=2 ! = �h2  0 �ii 0 ! (130)The diagonal matri
es are easily obtained as:Jz =  (Jz)1=2;1=2 (Jz)1=2;�1=2(Jz)�1=2;1=2 (Jz)�1=2;�1=2 ! = �h2  1 00 �1 ! (131)17In the pro
ess we have solved a huge and sophisti
ated problem in the mathemati
al theory of groups: wehave found all the irredu
ible representations of the orthogonal group in three dimensions, the rotation groupO(3). 23



J2 =  (J2)1=2;1=2 (J2)1=2;�1=2(J2)�1=2;1=2 (J2)�1=2;�1=2 ! = 3�h24  1 00 1 ! (132)j = 1; mj = �1; 0;+1 The matri
es are (2j + 1)� (2j + 1) = 3� 3�dimensional:Jx = 0B� (Jx)1;1 (Jx)1;0 (Jx)1;�1(Jx)0;1 (Jx)0;0 (Jx)0;�1(Jx)�1;1 (Jx)�1;0 (Jx)�1;�1 1CA = �hp2 0B� 0 1 01 0 10 1 0 1CA (133)Again the diagonal elements of the matrix are zero be
ause the krone
ker deltas require m0j =mj � 1 6= mj; but they also require the elements 2 steps away from the diagonal to vanish.Similar 
onsiderations apply to Jy, giving:Jy = 0B� (Jy)1;1 (Jy)1;0 (Jy)1;�1(Jy)0;1 (Jy)0;0 (Jy)0;�1(Jy)�1;1 (Jy)�1;0 (Jy)�1;�1 1CA = �hp2 0B� 0 �i 0i 0 �i0 i 0 1CA (134)The diagonal matri
es are easily obtained as:Jz = 0B� (Jx)1;1 (Jz)1;0 (Jz)1;�1(Jz)0;1 (Jz)0;0 (Jz)0;�1(Jz)�1;1 (Jz)�1;0 (Jz)�1;�1 1CA = �h 0B� 1 0 00 0 00 0 �1 1CA (135)J2 = 0B� (J2)1;1 (J2)1;0 (J2)1;�1(J2)0;1 (J2)0;0 (J2)0;�1(J2)�1;1 (J2)�1;0 (J2)�1;�1 1CA = 2�h2 0B� 1 0 00 1 00 0 1 1CA (136)That these matri
es have all the properties required of angular momentum operators 
an nowbe 
he
ked expli
itly. Thus, for the spin-1/2 matri
es it is easy to 
he
k that their 
ommutatorsare pre
isely the same as those of the angular momentum operators. Thus we �nd anotherway to represent operators in QM: instead of using di�erential operators, Heisenberg's QM usesmatri
es, and the failure of some operators to 
ommute is here realised through the well known
orresponding property of matri
es. For angular momentum there is a parti
ular simpli�
ation:the matri
es are �nite dimensional so that there is also a �nite number of eigenstates. 18

18Compare with the 
ase of the Hamiltonian operator for the in�nite square well or the harmoni
 os
illatorwhere there is an in�nity of eigenstates and therefore the matri
es would be in�nite-dimensional.24



APPENDIX C: CLASSICAL TREATMENT OF SPIN PRECESSIONIN A MAGNETIC FIELD. 19(C.1) Energy of a magneti
 dipole in a magneti
 �eld.An orbiting 
harged parti
le or a spinning parti
le possesses a magneti
 momentM, whi
h
an be pi
tured as a tiny bar magnet with the ve
torM pointing from the South to the Northpole. In Figure 10 we pla
e this dipole in a uniform magneti
 �eld B, whose dire
tion we 
hooseas the z�axis. Even though isolated magneti
 monoples do not seem to o

ur in nature, amagneti
 dipole 
an be thought of as a North pole with a magneti
 `
harge' +m separated bya distan
e 2r from a South pole with a magneti
 `
harge' �m. The dipole moment is thenM = m�(the separation)= 2mr or, taking the ve
tor separation 2r to point from S to N,M = 2m r (137)If our dipole is at an angle � to the uniform magneti
 �eld B = (0; 0; Bz) we 
an �nd the for
eexerted by the �eld on ea
h monopole from a law exa
tly like that for ele
tri
 
harges in anele
tri
 �eld: just as an ele
tri
 
harge q in an ele
tri
 �eld �z experien
es a for
e Fz = q�z, soa monopole of magneti
 
harge m experien
es a for
e Fz = mBz. These for
es, a
ting in thedire
tion of the �elds (
hosen as the z�dire
tion), 
an be derived from potentials (ie. potentialenergies), Eele
 = �q�zz gives a for
e Fz = ��Eele
�z = q�z (138)Emag = �mBzz gives a for
e Fz = ��Emag�z = mBz (139)Taking the origin of 
oordinates at the 
entre of the dipole, we 
an now �nd its total potentialenergy in the �eld by summing up the energies of the North pole situated at z = r 
os � and theSouth pole situated at z = �r 
os �:Emag = E+m +E�m= �mBzr 
os � � (�m)Bz(�r 
os �)= �(2mr) 
os �Bz= �(M 
os �)Bz where the dipole moment is M = 2mr= �M:B (140)where, in the last step we re
ognised � as the angle between the ve
tors B and M. Thisexpression is a
tually also valid in an inhomogeneous �eld and is used in se
tion 9 of the textto obtain the for
es a
ting on the dipole in the Stern-Gerla
h experiment.
19I use the notation L throughout this Appendix be
ause all 
lassi
al angular momentum is orbital angularmomentum. However all the results 
arry over to quantum me
hani
s provided due 
are is taken, so they applyboth to orbital, L, and spin, L ! S, angular momentum. To 
onvert the equations to spin we need only makethe repla
ements L ! S, ` ! s (s = 1=2 for spin 1/2), m` ! ms (ms = �1=2 for spin 1/2), and the Larmourfrequen
y is di�erent, !L ! !s; the gyromagneti
 ratio is represented by the same symbol, 
, for both 
ases, buthas di�erent values, 
 = �B=�h for orbiting ele
trons, 
 = gs�B=�h � 2�B=�h for spinning ele
trons and 
 = gs�N=�hfor neutrons and protons. 25



(C.2) Dynami
s of a dipole in a uniform magneti
 �eld.We begin with a qui
k and dirty derivation of the 
lassi
al law for angular motion:20 giventhe angular momentum ve
tor, L = r � p, let us �nd its equation of motion using Newton'sse
ond law: dpdt = F where p = mdrdt (141)Taking the time derivative of the angular momentum,dLdt = ddt(r� p)= drdt � p+ r� dpdt= 1m(p� p) + r� F using Newton II= r� F (142)In the penultimate step we re
ognised that the momentum is mass times velo
ity, ie. p =mdr=dt; the result is the term with p� p = 0 used to obtain the last line. The right hand sideis essentially the moment of the for
e a
ting on the parti
le whi
h is known as the torque �,dLdt = r� F � � (143)In Figure 11 we show this dipole in a uniform magneti
 �eld B, whose dire
tion we 
hoose asthe z�axis. The magneti
 moment experien
es a torque � given by (see Figure 12):� =M�B (144)First let us see how this result is obtained. If we pla
e our dipole at an angle � to a uniformmagneti
 �eld B we 
an �nd the torque exerted by the �eld from the law exa
tly like thatfor ele
tri
 
harges in an ele
tri
 �eld: the for
e on a monopole 
harge �m is �mB. Only the
omponents of these for
es perpendi
ular to the dipole 
ontribute to its rotation; the 
omponentsalong the dipole (ie. along r) balan
e exa
tly in a uniform �eld. In our Figure 11 the the for
esa
t anti
lo
kwise on both poles, giving a total torque, in the anti
lo
kwise sense,� = 2mrB sin � =MB sin �; (145)where we used M = 2mr. From the �gure we noti
e that this sense of rotation is also thedire
tion of the ve
tor 
ross produ
tM�B; moreover this 
ross produ
t has the magnitude ofthe torque sin
e the angle between dipole moment and magneti
 �eld is �. Hen
e we arrive atthe general result quoted above for the torque, whi
h we now apply by 
hoosing the z�axis tolie along the dire
tion of the magneti
 �eld, B = (0; 0; Bz),� = M�B (146)= �
 L�B for an orbiting e� (147)= �
 (Ly;�Lx; 0)Bz for an orbiting e� (148)This torque 
learly 
auses a pre
ession about the z�axis. 21 The angular frequen
y of thispre
ession, the Larmour frequen
y, is!L = �B�h Bz = 
Bz (149)20I am 
onsidering only a single point parti
le, whi
h is the 
ase of interest to us, but the results hold moregenerally.21A familiar example of pre
ession is that of a top or gyros
ope, where the role of the magneti
 �eld is playedby the gravitational �eld. 26



Proof 1: This is an elementary proof based on Figure 13 where, in a time dt, the dipole is seento rotate through an angle d' = !Ldt about the z�axis. The 
hange in angular momentum dLis then determined by the lever arm, whi
h is the proje
tion of the ve
tor L pependi
ular to thez�axis, L sin �: dL = ( lever arm)� (!Ldt)= L sin �!Ldt (150)This gives us an expression for the ve
torial rate of 
hange of angular momentum whi
h 
anbe 
ompared dire
tly with that given in equation (148) to give the Larmour frequen
y in equa-tion (149).Proof 2: Using Newton's se
ond law for rotational motion,dLdt = r� F = � (151)we obtain for the x� and y�
omponents,dLxdt = �
Bz Ly d2Lxdt2 = �
Bz dLydt (152)dLydt = +
Bz Lx d2Lydt2 = +
Bz dLxdt (153)where we took the time derivative of ea
h equation to get the equations on the right. Now we
an separate the two 
omponents of angular momentum by substituting for the right hand sidesof these equations from the original equations. We then re
ognise the result as 
lassi
al simpleharmoni
 os
illator equations with the Larmour frequen
y:d2Lxdt2 = �(
Bz)2 Lx = �!2LLx (154)d2Lydt2 = �(
Bz)2 Ly = �!2L Ly (155)Thus these two 
omponents of angular momentum rotate together about the z�axis with angularfrequen
y !L, while the z�
omponent remains 
onstant. A quantum me
hani
al treatment givenin Appendix D yields the same result, provided we repla
e the 
lassi
al angular momentum
omponents Lx and Ly by their 
orresponding quantum me
hani
al expe
tation values hbLxi andhbLyi. These results will be used later when we dis
uss Ele
tron Spin Resonan
e (ESR) andNu
lear Magneti
 Resonan
e (NMR).
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APPENDIX D: QM TREATMENT OF SPIN PRECESSIONIN A MAGNETIC FIELD.We have seen that a 
lassi
al dipole in a magneti
 �eld pre
esses with the Larmour frequen
y,and that the same applies to the QM 
ase of a magneti
 moment produ
ed by orbital motion. Itmay not be so obvious that the same holds for a magneti
 moment produ
ed by spin, espe
iallyas ele
tron spin is so diÆ
ult to understand 
lassi
ally. Here we show how to study the problemusing QM, while at the same time illustrating the role of the S
hr�odinger equation in spindynami
s and showing that it is the quantum me
hani
al expe
tation values that pre
ess. Inan applied magneti
 �eld the spin state � is altered by the fa
t that the energy 
hanges. Thisadds a term to the Hamiltonian whi
h a
ts only on the spin part of the wave fun
tion:bHs = �Ms:B = gs�BBz�h bSz = !s�h2�z (156)The spin part of the wave fun
tion �(t) is obtained by demanding it satisfy an appropriateTDSE whi
h takes a

ount of the above intera
tion, and whi
h indu
es a time-dependen
e:�(t) =  
1(t)
2(t) ! where bHs�(t) = i�h��(t)�t (157)ie. !s �h2�z�(t) = !s �h2  1 00 �1 ! 
1
2 ! = i�h _
1_
2 ! (158)Hen
e, !s�h2  
1�
2 ! = i�h _
1_
2 ! (159)ie. _
1 = �i!s2 
1 and _
2 = +i!s2 
2 (160)Hen
e the solutions, 
1(t) = ae�i!st=2 and, 
2(t) = be+i!st=2 a2 + b2 = 1 (161)where the 
onstants a and b are 
hosen to normalise the wave fun
tion and to satisfy the initial(t = 0) 
onditions. Two 
ases illustrate the relation between the 
lassi
al and quantum pi
tures:Case (1) Suppose the wave fun
tion is initially in the spin up eigenstate �+ of Sz,
1(t = 0) = 1; 
2(t = 0) = 0; hen
e a = 1; b = 0 and �(t) =  e�i!st=20 ! (162)Now, this remains an eigenstate of Sz, with eigenvalue +�h=2, for all times; all its expe
tationvalues are time-independent and so it is a stationary state with no pre
ession:h bSzi = �y(t)Sz�(t) = �h2�y�z�= �h2 � e+i!st=2 0 � 1 00 �1 ! e�i!st=20 != �h2 � e+i!st=2 0 � e�i!st=20 !h bSzi = �h2 (163)
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h bSxi = �y(t)Sx�(t) = �h2�y�x�= �h2 � e+i!st=2 0 � 0 11 0 ! e�i!st=20 != �h2 � e+i!st=2 0 � 0e�i!st=2 !h bSxi = 0 (164)Similarly h bSyi = 0. Thus we have the perhaps surprising out
ome that a pure spin eigenstatedoes not pre
ess at all, despite the fa
t that in the quasi-
lassi
al pi
tures of the quantumrules the spin ve
tor doesn't point exa
tly in the z�dire
tion. However the expe
tation values
orrespond pre
isely to the 
lassi
al values: if the 
lassi
al dipole is exa
tly aligned along thez�axis (allowed 
lassi
ally) then not only does the spin have zero proje
tion in the x� andy�dire
tions, but there is no torque a
ting and therefore no pre
ession.Case (2) Suppose the wave fun
tion is not a pure eigenstate but initially an equal mixture ofspin up and spin down:
1(t = 0) = 
2(t = 0) = 1p2 ; hen
e a = b = 1p2 ; and �(t) = 1p2  e�i!st=2e+i!st=2 ! (165)Sin
e this state is an equal mixture of spin up and spin down it is not surprising to dis
overthat its average proje
tion on the z�axis is zero:h bSzi = �y(t)Sz�(t) = �h2�y�z�= �h2 � e+i!st=2 e�i!st=2 � 1 00 �1 ! e�i!st=2e+i!st=2 != �h2 � e+i!st=2 e�i!st=2 � e�i!st=2�e+i!st=2 !h bSzi = 0 (166)h bSxi = �y(t)Sx�(t) = �h2�y�x�= �h4 � e+i!st=2 e�i!st=2 � 0 11 0 ! e�i!st=2e+i!st=2 != �h4 � e+i!st=2 e�i!st=2 � e+i!st=2e�i!st=2 != �h4 �e+2i!st=2 + e�2i!st=2�h bSxi = �h2 
os!st (167)Similarly, h bSyi = �h2 sin!st (168)Here we have the analogue of the 
lassi
al situation where the dipole lies in the x � y planewith zero z�
omponent: the spin ve
tor will then pre
ess around the z�axis. The QM exampleshows that indeed the expe
tation values have pre
isely these properties; moreover we now seethat the QM pre
ession frequen
y is !s � 2!L for an ele
tron.29


