QUANTUM MECHANICS B PHY-413 Note Set No. 9

Note: for examination purposes only sections1,3,4,6,7,
and 10 need be read

THE QUANTUM MECHANICS OF SPIN.

(1) INTRODUCTION.

We have already seen in our general discussion of angular momentum that besides the orbital
angular momentum operators, L = L, with integral quantum numbers:

£=0,1,2,... and, foreach?l, my=—4,—¢+1,...0...,0—1,/,

there emerged the possibility of half-integral angular momentum,
.13 , . . .
J=gig and, for each j, m; =—j5,—7+1,...,5 - 1,7

The approach taken was abstract, not relying on the detailed properties of the orbital angular
momentum operators (such as their representation by differential operators), but rather on the
algebraic properties encapsulated in the commutation relations.! Does nature take advantage
of the existence of this second possibility? The answer is ‘yes’; and it is interesting to note
that the discovery, as so often in science, preceded the above theoretical analysis in terms of
abstract operators, proceeding by analogy with the case of orbital angular momentum. The first
evidence came from the existence of doubled spectral lines - doublets - in the spectra of alkali
atoms such as Li, Na, K, Rb and Cs. This suggested that pairs of quantum states of similar
energy were involved in the transitions responsible for the spectra; and by analogy with orbital
angular momentum where 2/+ 1 is the number of my—values allowed for a given £, one supposes
that the multiplicity 2 = 2¢ 4 1, giving £ = 1/2. In 1925 two graduate students, Goudsmit and
Uhlenbeck suggested that this form of angular momentum - the spin - was carried by the atomic
electrons and was an intrinsic> property of electrons. The Stern-Gerlach experiment in 1922,

LAlthough we shall not deal with this topic, there is a very deep fundamental reason why this approach
has a wider applicability: the angular momentum operators are the generators of infinitesimal rotations,
the operators which carry out infinitesimal rotations of the coordinate axes. The commutation relations are
the inevitable consequence of the very simple fact that two successive rotations can be represented by a single
rotation - a trivial example is that two successive clockwise rotations by 45° about any axis is equivalent to a
single rotation by 90° about that axis. These are the defining properties of a mathematical entity - the rotation
group in 3-dimensions, O(3). Suppose we rotate the coordinate axes clockwise by an angle da about an axis
lying in the direction of the unit vector n. In QM the operator describing the effect of this infinitesimal rotation
on a wave function is:

ﬁn(&t) =1- %604 n.j,

and the wave function becomes Un(da) ¥(r). Note the similarity to the much simpler parity operator. For finite
rotations by a about the same axis the operator becomes

You may like to compare this with the tutorial problem TUT.4 in Problems 2, where we saw that the operator
carrying out a finite translation by a along the r—axis is

fa — eiapm/ﬁ.‘

showing us that p, is the generator of infinitesimal translations in the xz—direction.

Intrinsic properties are those possessed by a system which are identifying attributes of the system and which
do not change. Thus, an electron can have any orbital quantum number ¢ = 0,1,2... depending on its quantum
state at the time, but its spin, electric charge, mass and lepton number have fixed values: they are intrinsic
properties.



measuring the magnetic moment of Ag atoms, had also shown the surprising occurrence of two
states where only an odd number, 2¢ + 1 was expected. Later we shall discuss this experiment
in detail.

Spin cannot be understood classically. Several aspects of spin angular momentum defy
our attempts to understand it as the analogue of a top spinning about its axis - despite the fact
that one’s mental image of spin is precisely this classical system! The key to the difficulty lies in
the experimental fact, gleaned from many high energy scattering experiments on electron and
positron beams, that the electron is as close to Newton’s idealised point particle as one could
imagine:

Electron scattering experiments are consistent with: m, = 0.51 MeV and 7, < 10720 m.

Taking the electron as a sphere of mass m, and radius r. spinning about its centre with average
speed v, and ignoring factors of order 1, the angular momentum is,

h

> ~2x1071 m,
2mev T 2mec

J R Temev = ox implying, r. =

which is seven orders of magnitude greater than the experimental limit. To put this into the
context of 1921, compare this with the sizes of atoms (around 107'° m) and of the proton (107!
m); yet at the time it was already known that the electron was very much smaller than either
atom or nucleus. We can put this another way: the speed of rotation needed to explain the
magnitude of the spin angular momentum for a particle as small as an electron exceeds the
speed of light by seven decades:

B
VA > 2% 107 c.
2MeTe

Thus, like many quantum phenomena, spin has a classical analogue, but the analogue fails to
provide a quantitative explanation; it only gives us a convenient mental picture. Electron spin
appears to be an entirely quantum mechanical phenomenon. This statement is not, however,
quite correct: in 1926 Dirac presented his famous relativistic wave equation for the electron - the
Dirac equation - which not only gives the correct spin angular momentum, but also an excellent
approximation to its measured magnetic moment and a prediction that the electron has an
antiparticle, now called the positron. Thus relativity in concert with QM plays an essential role
in the explanation of spin.

Having concluded that we cannot picture spin angular momentum simply as matter rotating
in some sort of orbit around the electron’s centre whose shape we could hope to determine -
perhaps by some sort of generalisation of a spherical harmonic - we now face a dilemma: what
are the coordinates that play the role of (z,y, 2) or (1,0, ¢) in describing orbital angular momen-
tum? Since we do not know we must resort to an abstract approach via the angular momentum
operators for spin. This has already been accomplished by our discovery that the commutation
rules for the angular momentum operators J provide for the possibility of spin angular momen-
tum h/2. We now continue along that path by following Heisenberg’s matrix approach to QM
in which no reference need be made to the coordinates.

(2) INTRODUCING HEISENBERG’S MATRIX MECHANICS.

In his matrix version of QM Heisenberg achieved a form of the theory which made reference
only to directly measurable physical observables, the expectation values. The formalism is
ideally suited to the quantum mechanical study of angular momentum, especially spin. The
most appropriate notation to use is Dirac’s bra/ket formulation, but since I wish to avoid



introducing yet more new material I shall justify and explain the steps in the argument in terms of
orbital angular momentum and simply carry over the results directly to spin angular momentum.
However, all results can be proved in a general way without recourse to the integrations I use.
Given the eigenfunctions 1;,; of the angular momentum operators 32, and jz, the gener-
alised expansion theorem allows us to write, for any wave function ¥; corresponding to a given
total angular momentum j: 3
J
\I/j = Z ij T/Jj,mj- (1)
mj=—j
Note that (a) we are considering a system with definite total angular momentum, ¥; being an
eigenstate of 32, so there is no sum over j here; (b) we do not mention any spatial dependence
for the wave function because for spin wave functions we don’t know whether there is any,
and if there is we don’t know what the coordinates are.* The coefficients in the expansion are
normalised,
J
> lem P =1 (2)
mj=—j
This follows from the normalisation of ¥; and the orthonormality of the eigenstates v;,,, and
shows that the \cmj|2 are probabilities. For a system in the state U; a measurement of the
z—component of angular momentum will yield one of the eigenvalues fim; with probability
|Cm; |. After a measurement of the z—component of angular momentum yielding the result m;
the wave function becomes
T; after = Vim, (3)
and if the system is then left undisturbed, a subsequent measurement will yield the same result
m; with probability 1.
Now we consider the case of orbital angular momentum, where the wave function does depend
on the coordinates, and the expansion eigenfunctions are just the spherical harmonics Y ;. The
expectation value of any operator A when the system is in the state U, is then®

(A) = /xp;.ﬁxpjd% (4)
= Y uem, [ Atim, &' (5)

m; m;
= ctac (6)

(a) The expansion coefficients have been assembled into a (25 4+ 1)—dimensional column vector,
C - you can think of the entries as the components of the original wave function ¥; in the basis
of eigenstates 1,

¢j
Cj_l
C= : Cl=(c¢c_y ...... ;) (7)
C—j

3Strictly speaking, we should say the total angular momentum is h+/j(j + 1), but we shall often lapse into

this shorthand. In a similar way we refer to spin 1/2 or //2 instead of fiy/1/2(1/2 + 1) = h/3/2.

4This is where the Dirac formulation comes into its own. The states are represented by the kets |7) which are
independent of the coordinates, whatever they may be.

5We use the notation A for abstract quantum mechanical operators, A for the matrices representing them and
(A)a,p = Agyp for the a,b element of the matrix. Bold faced symbols without a hat denote column vectors, C. In
Dirac notation the right hand side of eq (4) is (j|;1\\j), while the integral in eq. (5) is (J, m9|;ﬂj, mj),



The vector C tells us everything we can know about the wave function ¥; and plays the role of
the wave function in matrix mechanics, including the normalisation,
J
cic= Y lem>=1 (8)

mj=—j

(b) Similarly, the (25 +1) x (25 4+ 1) matrix A contains all the information about the expectation
value of A for all possible situations, ie. for any possible wave function ¥;, now represented by
the vector C; the matrix elements of A are:

Aay = (A)yt ;= / O A, & 9)

We can also show that the rules of matrix multiplication apply, ie. the matrix representation
of the operator AB is indeed the product AB of the matrices representing A and B separately.
One consequence of this is that if a set of operators, such as the angular momentum operators,
satisfy a set of commutation relations then so do the matrices representing them.

An important special case occurs when the eigenfunctions used in the above are eigenstates
of the operator A itself, for example with A= jz,

o jm; = himjbjm, (10)
where the eigenvalue is im; In that case the matrix representing J, is diagonal:
(Jz)m;m] = / w;’m; szj,m]‘ de
= hm, / 1/1;‘7m9 Vjm, d*z for eigenstates of .J,,
= hm, 5m; m; (11)

where, in the last step, we used the orthonormality of angular momentum eigenstates. Similarly,
for the J2 operator, its matrix representation is not only diagonal, but simply a multiple of the
unit matriz:

32, = 0250+ 1) by, (12)
0 R
In its full glory the J, matrix looks like this:
()i (J)jg—r o ()i g0 ... 0
J)j-1 (J)j—1j—1 oo (J2)jo1—; 0 j—1 ... 0
= (z).] j (z)]. j . (z)lj j _ ) J- o (13)
()i (Ja)ggr oo (Ja)jiy 0 0 ... —j
and the J2 matrix like this:
10 0
01 ... 0
J2= 1% +1) S (14)
0 0 1

To summarise: All the consequences of quantum mechanics can be obtained from its ma-
trix formulation: all information about the wave function is contained in the column vector C,
which is henceforth known as the wave function and which is normalised,

ctc=1. (15)



All operators are represented by matrices A; measurements yield only expectation values which
are calculated from matrix products such as:

(Ay=ctac (16)

The matrix A is diagonal in a basis of eigenstates of ﬁ, the diagonal elements being the eigen-
values of the operator. Finally notice that the general wave function vector C is not itself an
eigenvector of the matrix A, reflecting the fact that ¥; is not an eigenstate but a linear com-
bination of eigenstates 1;,,; however, if we take ¥; to be an eigenstate 1; ,;, then all the c’s
vanish except ¢p,; = 1. The wave function would then be represented by the column vector with
zeros in every position except the m;—th,

0
0
C= ) (17)
0
and it would be an eigenvector of the matrix J,:
J,C=hm;C (18)

The key point for us is that this formalism is essential when one deals with purely quantum
phenomena where, as in the case of spin, it is not known what the appropriate variables, or
coordinates actually are.

(3) j=s=1/22 MATRICES FOR THE SPIN-1/2 OPERATORS.

At this stage we have nearly all the necessary equipment to write down the matrices rep-
resenting the angular momentum operators for any value of 5. These matrices will obey the
commutation relations of the abstract operators they represent, just as do the differential op-
erators —ih(yd/0z — z0/0y), etc. used previously to represent the orbital angular momentum
operators. When we are talking about the special case of orbital angular momentum we know
what degrees of freedom are involved - (6, ) - but for spin we have no idea, and so the only
possibility open to us is to use the matrix representation. This is why the abstract approach
to the angular momentum operators is so useful - indeed indispensable. In this section we will
obtain these operators for spin-1/2 in as elementary way as possible; for higher values of j this
method would become impossibly cumbersome. In Appendices A & B we give a systematic gen-
eral method for finding the matrices for any j which is quite elementary but involves a multitude
of subscripts due to this generality. I recommend that you look through it after reading this
section simply to convince yourself that it can be done directly.

Our strategy here will be to construct the 2 x 2 Hermitian spin-1/2 matrices by requiring that
they satisfy the angular momentum commutation relations. We begin with the two diagonal
matrices J, = S, and J? = S2, which we have already found in eqs. (13) and (14):

1 0 2 (1 0
&=%<0_J §=§%<01> (19)

where the factor in front of the S? matrix is h%j(j + 1) with j = s = 1/2. We now write the as
yet unknown complex matrices J, = S; and J, = S, as

a b a b
S:z:: %(c d) Sy: %<C' d’) (20)



Step 1: First we show that the two matrices have no diagonal elements, a =d =a' =d' =0
by demanding that they satisfy the commutation relations [S,, S.] = ih S, and [S;, S;] = ih S

: h\? a 0 a v 5
) d -1 d d Y
h h2 a - a b
ence, R Rl BV
. 2 0 b . a b

or, cancelling h*/2, ( Jd0 =il . 4

Hence, equating individual components of the matrices,

Sy,S = ihS, (21)

o 2
[SUERS S STIS N

——
Il
.
|
VN
o

a=0, d=0 and b =ib,  =ic (23)
To see the consequences of the commutator
(S2,Sz] = =[Sz, Sz =ik S, (24)

all we need do is notice that the calculation goes precisely as the one above except for the
interchange = <> y, ie. of primed and unprimed symbols, and an additional minus sign on the
left. The result is therefore:

a=0 d=0 and b=ib, —c=ic (25)
Putting all these results together we now have,
a=0, d=0; ad =0, d=0 and b = —ib, ¢ =ic (26)

so that the matrices are off-diagonal and can be expresssed in terms of only two unknown

numbers b and c,
0 b 0 —ib
_ h — bk
Sx_2<c 0) Sy 2(2'0 0) (27)

Step 2: The penultimate step is to impose the remaining commutation relation,

S2.5,] = ihS, (28)
(P f(0 b0 by (0 —ib) (0 b k10
2 c 0 ic 0 ic 0 c 0 9 lo -1
hemce B [(ibe 0 \ [ —ibc 0 I A
Hee, 4 0 —ibe 0 ibe "9 lo -1
. ) bC 0 o 1 0
or, after cancelling ih°/2, ( 0 —be = 0 —1 (29)

Hence, equating individual components of the matrices,

be =1 (30)



Step 3: The final step is the phyical requirement that S, and S, correspond to physical

observables with real expectation values, ie. that they be Hermitian matrices, ©
Si=(8H)" =5, Sh=15, (31)

Thus, for S,:
f
0 b 0 c* 0 b
(0e) - (ro)- (1) &
which immediately tells us that the parameters are complex conjugates of each other,
c=0b" (33)

This condition also ensures that Sy is Hermitian, so there is no further information to be gleaned.
Combining our two relations for b and ¢ then yields

b = le* =1 (34)

The general solution is ‘ ‘
b=e" c=e'9, (35)

where « is a constant real phase angle which has no physical consequences. We are therefore
free to choose the simplest solution, @ = 0; the physics would be the same for any other choice,

b=c=1 (36)

We finally have the matrix representation for the spin-1/2 operators:

_a[ 01 a0 —1 a1 0 9o _an2 (10
SI_Q(lO Sy =3 t 0 5:= 3 0 -1 =5 01

®Beware: only if operators are being represented by matrices does the adjoint operation (the dagger) corre-
spond to the complex conjugate transpose operation; for representation by differential operators it corresponds
to complex conjugation and turning the action from operating on 9 to the right into operating on 1™ to the left
in expectation values.



(4) PAULI MATRICES & SPIN WAVE FUNCTIONS FOR j=s=1/2.

Since spin does not emerge from the quantum mechanics of the Schrodinger equation, it has
to be grafted on as an additional postulate: the wave function of a particle with spin is a product
of the spatial wave function, ¥(r,¢) which satisfies the time dependent Schrédinger equation,
and a spin wave function, xspin, which is a (2j +1)—component vector obtained from the matrix
formalism:”

Wiotal = \Il(r, t)Xspin (38)

This is not to say that QM is unable to incorporate spin into the theory in a unified way; the
missing ingredient is relativity: the Schrodinger equation is non-relativistic. Shortly after the
Schrodinger equation was first introduced Dirac published his relativistic wave equation for the
electron - the Dirac equation - which not only gives the correct spin angular momentum, but
also an excellent approximation to its measured magnetic moment and a prediction that the
electron has an antiparticle. Relativistic wave equations also exist for other values of spin. In the
Dirac equation the wave function contains all three ingredients in a unified way: the space-time
dependence, the spin dependence and the antiparticle wave function.

For spin-1/2, we have seen that the angular momentum operators j, now called S for ‘spin’,
are represented by 2 x 2 Hermitian matrices S;, given by the Pauli matrices o;:

Si = 5 Ois i=1,2,3 (or, in an often used equivalent labelling, i = z,y,z), (39)

where: alzax:<(1) (1]> 0220y2<? —02> 03:Uz:<(1) _01> (40)

We emphasise again that the matrices satisfy precisely the same commutation relations as the
quantum mechanical angular momentum operators themselves:

for the QM operators: [§$, §y] = ih S,; for the matrices: [S;,S,] = ih S, (41)

In fact, as we saw in the previous section, these matrices can be discovered by simply seeking the
Hermitian 2 x 2 matrices satisfying the commutation relations - the answer is unique. Another
useful way to look at the Pauli matrices is that any Hermitian 2 X 2 matrix can be written as a
linear combination of Pauli matrices and the unit matrix,

1:%:<3 2) (42

The eigenvectors (or eigenstates), x4 and x_, of the diagonal matrix S, = h/20, are inter-
preted as quantum states with definite values of the z—component of spin; these values are the
eigenvalues img = +h/2 and hmgs = —h/2. To find these eigenstates we apply a systematic
procedure, although the result is fairly obvious:

X+:<é> and x=<?> (43)

We are using the notation x in the case of spin-1/2 for the column vectors denoted C in the
general discussion of section 2.

" Actually the situation is a little more complicated: when a spinning particle is subjected to a time-dependent
magnetic interaction the spin part becomes time-dependent. This is achieved through having time-dependent
coefficients a = a(t) and b = b(t) in the expansion theorem for yspin in egs. (51) & (52). See Appendix D for a
worked example.



Proof: The requirement that xy be an eigenstate of S, is:

Sox = oA (44)

where, although we already know that the eigenvalues of S, correspond to A = %1, we shall
find it convenient to actually confirm this by calculation. Now the most general form for any
normalised spin-1/2 wave function is

X = ( Z ) with  |a|* + |b]> = 1. (45)

Our task is to find a,b and A. Using the known form for the S, matrix, the requirement that y
be an eigenstate of S, becomes:

S, x =

>
VR
=<
N | S
< >~
N~
— < 2
S S—
N~

-1

4 ) (46)

Equating the elements of column vectors in the first and last lines and cancelling %/2, we find:

NS NS NS

VR

al = a (47)
by = —b (48)

These two equations are clearly inconsistent if both a and b are non-zero; but they can be satified
by taking one to be zero. This gives two possibilities,

either b=0 a#0 and therefore =41
and normalising, a =1
or a=0 b#0 and therefore A= -1

and normalising, b=1

Q.E.D.

As befits eigenstates of a Hermitian operator with different eigenvalues, they are orthonormal,
ie. both normalised and orthogonal:

XLXi =1 and XLX? =0 (49)

Since S? commutes with S, they are also eigenstates of S? with common eigenvalue 37’12/4:

S, x+ = :i:g X+ and S%y, = ZTLQ pas (50)
All these equations can be checked out explicitly by using the matrices for the spin operators,
and you should do this for yourself. Moreover you can see that the Expansion Theorem holds
because any 2-dimensional vector, y, can be written as a linear combination of the two unit
vectors x4 given in eq. (43):
X=ax++bx- (51)
8This is a special case of equation (1) for spin-1/2, with spin eigenvalues j = s = 1/2 and m; = ms = £1/2, and
the general wave function C becomes the general two-component vector, now called x, with ¢/ = a,c_y/2 = b.




X = < Z ) x' = (a* b*), with normalisation: Y, |cm, |2 = |a|? + [b]?> =1 (52)

In general the state x is not an eigenstate of any of the spin operators. This is just like the
case of states obtained from linear combinations of energy eigenstates: they, too, are not eigen-
states of the Hamiltonian operator. The case of spin is so much simpler because the space is
finite-dimensional (2-D for spin-1/2) and so there are always only a finite number eigenstates
and terms in the expansion theorem. However the measurement postulate is the same:
Measurement Postulate: For a spin-1/2 particle in a general state x given above, the pos-
sible outcome of a measurement of the z—componenet of spin is one of the eigenvalues £ /2
(ie. ms = +1/2), with respective probabilities |a|?> and |b|2. If say, a measurement yields a
value m; = +1/2, then the wave function ‘collapses’ to the eigenstate X, fier = X+. Since this
is an eigenstate of S,, a subsequent measurement will yield the same value my; = +1/2 with
probability 1. We will shortly explore these concepts using the Stern-Gerlach experiment as the
method for preparing spin states and measuring spin components.

(5) ROTATED SPIN OPERATORS & THEIR EIGENFUNCTIONS.

Note: The following derivation is a fairly general one leading to the general result, eq. (70). We
will actually only use the special case, eq. (72) in discussing the Stern-Gerlach experiment. This
is derived separately in Section 6 by a more elementary method, so you may skip the remainder
of this section if you wish.

As a preparation for our discussion of the Stern-Gerlach experiment we now ask the following
question: Suppose we prepare a spin-1/2 system in an eigenstate of S, and then subsequently
measure the component of spin in some other direction; what are the possible outcomes? An
equivalent way to pose this question is: What are the eigenstates of the spin operator corre-
sponding to a direction specified by the unit vector n? Because the spin operator is a vector its
component along n is simply the projection,

S, =n.S  and we seek the x/, for which S, x/, = i§ Xt (53)

For simplicity we only consider the case where the vector n lies along the direction obtained by
rotating the z—axis by an angle 6 about the y—axis. If we call this the 2’ —axis, and the rotated
x—axis perpendicular to it the z’—axis, then we are just asking for the new spin operators in
the new coordinate system (z',y', 2’):

, z Figure 1: Picturing the rotation by

angle f about the y—axis.
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Since S transforms as a vector the figure shows that the relation between new and old matrices

1S:

Sy = Sycosf— S, sinf (54)
Sy = 8, (55)
Sy = S,cosf+ S, sinf (56)
so that the new matrices become,
_ n[ —sin@ cosb o _ a0 —u _ nf cosf sinf
St = 2( cos 6 sin9> Sy =Sy = 2(2' 0> S = 2<sin6‘ —cosf
(57)

As a check on our algebra we note that # = 0 or § = 360° gives back our original matrices, while
0 = 90° just exchanges the x— and z—matrices, with a sign change on S,/, as we would expect
since the new z’—axis is now playing the role of the original —z—axis. This shows rather clearly
that it’s just a matter of our choice onto what axis we decide to measure the projection of the
spin.

Now we look for the eigenstates of the new S,» matrix. By the expansion theorem, eq. (51),
these eigenstates, X', must be normalised linear combinations of the original eigenstates of S,

(eq. (43):
( ‘b‘ ) with [l + B> = 1.

For this to be an eigenstate, with eigenvalue Ah/2 (where we already know A = £1 because the
particle has spin-1/2),

X' =ax+ +bx- = (58)

h

S, x = 5)\ X' (59)

Using our matrix representation for S,» and the expressions for the original eigenvectors x/;,

h h a
ro_ Ry
Sux' = FAX 2>\<b> (60)
_ h [ cos® sind a
2\ sinf —cosé b
_ h( acos®+ bsind
T2 < asinf — bcosf ) (61)

Equating the elements of column vectors in the first and last lines, cancelling 7/2 and collecting
coefficients of a and b, we find:

bsinf
b(X + cos )

a(A —cosf) =

asinf =
Dividing the equations gives a consistency condition leading to the expected two eigenvalues:

(A —cosB) (A4 cosf) =sin?f, ie. A2 —cos?’f =sin®0, or A2 =1, hence A=+l (64)

Considering each case in turn gives the two eigenstates x/, and x’_, where we use the trig. iden-
tities (1 — cos @) = 2sin? /2, (1 + cosf) = 2cos? /2, sinh = 2sinfh/2cos0/2:

b (1—cosb) 25in% 0/2, sin@/2,
F — 1 : — = — e
or A= a sin 0 2sin@/2cos6/2  cosf/2

(65)

11



b —(14cosb) 2cos? /2, cos /2,
F =—-1: —-= = - = -
or- A a sinf 2sin6/2cos 6/2 sinf/2 (66)

The magnitude of a in each case is obtained from the condition that x’. be normalised:

b
jal* + o = lal(1+[—[*) =1 (67)
For A=+1: a=cosf/2, b=sinb/2 (68)
For A\=-1: a=sinf/2, b= —cosf/2 (69)

Finally we obtain the required eigenstates of S,:

, [ cosB/2 ;L sinf/2
X+ = ( sin /2 ) and - = ( —cos0/2 (70)

We can check our algebra by noting that we recover the original S, eigenstates x* for § = 0. But
by putting 8 = 27 we fail to recover the original eigenstates, even 'though this corresponds to the
same point in space as § = 0. This quite remarkable property is an entirely new phenomenon:
the spin-1/2 wave functions are not single-valued, but double-valued:

Xe(0+2m) # xi(0)
but, — xi(0+4m) = x.(0) (71)

Finally we note the result we will apply to the double Stern-Gerlach experiment:

s 1 1
For 025; X;:%<l> and XL:%<_1> (72)

A glance at Figure 1 will show that § = /2 corresponds to the new z—axis pointing along the
old z—axis: thus S,» = S, and so these eigenstates are eigenstates of S,. In the next section we
shall obtain this result directly without quite so much algebra.

If we had repeated the above analysis, but rotated by  clockwise about the z—axis instead, we
would have found,

Spgr = Sy (73)
Sy = Sy cosf— S, sinf (74)
S,n = 8, cosf+ S, sind (75)

so that the new matrices become,

_ ok —sin? —ico§9_ _ _ ok 01 _ n cosH_i —isin?
Sy = 2( icos 6 sin 6 ) Sor = 5p = 2(1 0 S =3 1sinf —cos®
(76)
The eigenstates of S,» would then become:

s [ cosB/2 0o siné/g
X+ = ( isinf/2 ) and = = ( —icosf/2 (77)

Finally we obtain the eigenstates of Sy:
g_ T, no_ 1 1 no1 1
For 9—5, X+_W<i> and X_W<—i> (78)

12



We see that § = 7/2 corresponds to the new z—axis pointing along the old y—axis: thus S,/ = Sy
and so these eigenstates are eigenstates of S,. You should confirm this last result by using the
method of the next section to obtain it directly without quite so much algebra.

(6) SPIN EIGENFUNCTIONS FOR QUANTIZATION ALONG THE z—-AXIS:
EIGENSTATES OF S;.

Given the eigenfunctions, eq. (43), for spin quantised along the z—axis, we now wish to find
the eigenfunctions for spin quantised along the z—axis. This is equivalent to asking for the
eigenstates x' of Sy,

h
SI X’ = §>\XI- (79)

where, although we already know that A = +1 (because we are describing a spin-1/2 particle),
we shall find it convenient to actually confirm this by calculation. Now the information we begin
with is that the eigenstates of S, are given by eq. (43), so we can use the expansion theorem to
express our unknown wave functions x’ as a linear combination, eqs. (51), (52):

X =axy +bx_ = ( Z ) with  |a|> + |b]> = 1. (80)

and then use the matrix representation S, given in eq. (37),

01

Putting these all together, the requirement that x’ be an eigenstate of S, reads:

h h a
I—— I: —
SmX—2>\X A<b>

h b
= 5() (82)

ax = b (83)
a = b\ (84)

Dividing the equations gives a consistency condition leading to the expected two eigenvalues:
A =1 hence \==£I (85)

Since a and b have the same magnitude for both eigenvalues, the condition that x’, be normalised
requires:

a)> +b> = 2la/>* =1,  or, taking a real and positive, a = 1 (86)
V2
and therefore a = 1 b= ii for A= +1 (87)
V2 V2
Finally we obtain the two eigenstates x/, and x’,
Xs=—=0rr £ x ) (58)

N
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or, in explicit form,

P 1 1 P 1 1
X+—E<1> and X‘ﬂ(-l) (89)

where the + denote eigenstates of S, with eigenvalues £7/2. It goes without saying that these
states are still also eigenstates of S? with the same eigenvalue 3h%/4 as the original eigenstates
x+ of S,. We shall see the physical significance of all four of these states when we consider the
triple Stern-Gerlach experiment.

(7) THE TRIPLE STERN-GERLACH EXPERIMENT.

Before describing the details of the Stern-Gerlach experiment, we shall first abstract its
essence in order to discuss the theory of measurement in QM. The experiment can be thought
of as a method for either measuring a component of the spin or of preparing an ensemble of
states having one component of spin determined, ie. of preparing an eigenstate of S,, S; or
whatever. We represent the apparatus as a ‘black box’ into which a beam of spin-1/2 particles
is injected and from which emerge two spatially separated beams: one with spin projection along
the measurement axis +%/2; the other with —h/2. Figure 2 illustrates two separate measure-
ment experiments in which an unpolarised beam of spin-1/2 particles enters the apparatus. We
can think of the incoming beam as having a random mixture of all possible spin orientations:
one experiment measures the z—component; the other the z—component. The two outgoing
states are spatially separated and exit in the pure eigenstates x+ and X/, respectively.

X+ X+

—>—X_ —P—X_

Figure 2: Abstract Stern-Gerlach experiments, one measuring the z—component
of spin, the other the z—component. Note that the outgoing beams have equal
intensity one-half that of the incoming beam.

These illustrate the angular momentum quantization rule that for a spin-1/2 particle (the in-
coming particle) the only possible outcome of a measurement of a component of the spin angular
momentum is one of the eigenvalues, +h/2 or —h/2. This is the first stage of the measurement
postulate of QM. Note how radically different the outcomes of these experiments are compared
with our classical expectation: since the incoming beam is unpolarised we expect the spins to be
oriented randomly in all possible directions, with projections on the z-axis having a continuum
of values lying between +h/2 and —h/2; instead we only measure two values, and any single
particle passing through the apparatus will exit either in one beam or the other, not anywhere
between the beams. Even more at variance with our classical experience is that the very same
incoming beam going through the S, measuring apparatus now seems to have only the maximum
possible z-axis projections, £/2, a clear impossibility if they already have the maximum z-axis
projections as evinced by the S, measuring experiment! From the quantum mechanical point of
view we have to accept that in the incoming beam the spin projection of an individual particle is
not known, only its probability. Thus it is only after a measurement or preparation that we can
say for certain what it is, and then only at the moment of measurement, not before. If we are
tempted to say, ‘Well, it really had the value we determined all along and we just didn’t know it
until we actually looked’, then the fact that a similar measurement of the z-component can only
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yield £//2 should cast doubt on this interpretation, since now it seems it could ‘really’ have had
a component inconsistent with the value already determined. Thus it seems that a particle’s
property depends on which experiment we set up. We shall see this in the triple Stern-Gerlach
experiment. Thus, just like the two-slit experiment, we have to think of an incoming particle
as being in neither one state x; nor the other x_, but ‘in some sort of equal mixture of the
two’; the physical meaning of this statement is that a measurement of the z-component of spin
for an unpolarised beam will yield only one of the two eigenvalues of S,, but with equal prob-
ability. Once the measurement is made, the wave function ‘collapses’ into the appropriate state.”

The double Stern-Gerlach experiment enables us to illustrate the next stage of the mea-
surement postulate. First consider two Stern-Gerlach experiments, both measuring the z—component
of spin. We now discard one of the beams emerging from the first stage. This can be viewed
as measuring the z—component of spin and using this to prepare the system in the eigenstate
X+, or as the ‘collapse’ of the wave function into the state x4 as a result of the measurement
(which is the process of separating the incoming beam and discarding the lower one). Since the
state entering the second stage has ‘collapsed’ to the eigenstate x (or has been prepared in
that eigenstate) the result of the second measurement is certain: only one beam now exits the

second, corresponding to spin up.

X+

X+

Y
N
N

I x-

Discarded
beam

Figure 3: Double Stern-Gerlach experiment illustrating the measurement process
in QM. Both measure the z—component of spin, but only one beam emerging from
the first is admitted into the second.!®

The triple Stern-Gerlach experiment illustrates several aspects of the quantum measur-
ing process and dramatises the consequences of the expansion theorem in a most remarkable
way. We now interpose between the two S, experiments of the double Stern-Gerlach apparatus
a third experiment which measures the x—component, S;:

, > X+
LS
. X+ Sz — y_
—_— S, —— X'_
Discarded
1 x— beam
Discarded

beam
%A subtle point about the wave function representing the unpolarised incoming beam: we have not dealt with
such incoherent states in this course, and so I have avoided writing down a wave function for it; but such states
have the property that we can still predict the probabilities I am talking about in the text. The formalism used
for these so-called mixed states is the density matrix formalism.
10Since there is nothing special about the symbol z, we could equally well have illustrated the principle with
measurement of the z—component. The same picture would serve with the replacements: S, — S, and x+ — x4
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Figure 4: Triple Stern-Gerlach experiment.

The first and last stages measure the z—component of spin, but the beam selected from the
first is now submitted to an S, measurement and only one emergent beam is in its turn sub-
mitted to the final stage, a second S, measurement. The intermediate measurement has now
influenced the outcome of the last measurement and we see the phenomenon of regeneration:
the down spin state discarded in the first stage reappears in the outgoing beam of the whole
experiment, as if the intermediate measurement of S; had ‘disturbed’ the system and reintro-
duced some down component. In equations, the sequence is as follows: the incoming state is an
unpolarised mixture of spin up and spin down with respect to any chosen axis; the z—axis is
the one chosen for the first stage measurement, so the spin up and down beams emerging from
the S, measurement are of equal intensity. Choosing to inject only the spin up beam into the
Sz measuring apparatus means that the incoming state for this stage is, x4, which, using the
expansion theorem we may write in terms of the S, eigenstates,

1 !/ 1 !/
= —\" +—=x_ 90
X+ \/EX-I— \/EX ( )

Again there are only two beams emerging from the S; measurement with equal intensity, from
which we select the one in state x/,. This is the initial state for the final S, measurement, which
we again expand, but this time in terms of S, eigenstates:

1 1
Xy = Noha + Nola

Here we have the final outcome: there are two equal intensity beams emerging from the final
stage, with each S, eigenstate being present, despite the fact that the first stage of the experiment
had discarded the beam in the y_ spin down state.

Now we come to a crucial point: one may wish to attribute the regeneration observed in the
triple Stern-Gerlach experiment to the so-called ‘disturbance’ introduced by the intermediate
S measurement; but in fact this is no disturbance at all. We can show this by altering the last
experiment by not excluding the S, spin down beam, but allowing it also to enter the last S,
measuring phase. The result is that only the spin up component emerges from the last stage:

(91)

e —— X+
— Xt S, S,
'
— - | s X
X
Discarded
beam

Figure 5: Triple Stern-Gerlach experiment without discarding the down compo-
nent at the intermediate stage. This shows that the intermediate stage introduces
no ‘disturbance’ when no detection occurs there.

In equations this is simply stated: the two beams exiting the S, apparatus are recombined
when they enter the final stage, maintaining their coherence. Thus the beam entering the final
stage is a linear superposition of equal intensity beams, with wave function

L, 1.
ot = =Xt +—=x"
XS.out \/§X+ \/EX
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where, in the last line, we recognise the combination of S, eigenstates as the spin up S, eigenstate
X+. Hence we confirm that the S, apparatus itself does not disturb the system. Rather than
the collapse of the wave function resulting from a disturbance inside the S, apparatus, it is
a consequence of a measurement being registered afterwards - in the case of the triple Stern-
Gerlach experiment the measurement is the process of completely excluding the lower beam
emerging from the S, apparatus; the upper beam is not touched at all and therefore suffers no
disturbance. The analogy with the two-slit experiment should be obvious: if we block the beam
from one slit altogether we lose the interference pattern. Thus we see that the act of measurement
introduces a degree of decoherence - the triple Stern-Gerlach experiment described is an extreme
case where one beam is completely destroyed, but one can imagine introducing a counter in the
lower beam instead as one does in attempting to follow the path of the beams in the two-slit
experiment. Finally we note that the experiments described here are very closely related to the
famous Aspect et al experiments which tested the Bell inequalities and confirmed this apparently
strange behaviour of the QM measurement process.
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(8) ATOMIC MAGNETIC MOMENTS & ATOMS IN A MAGNETIC FIELD.

The purpose of the Stern-Gerlach experiment is to measure the magnetic moments of neutral
atoms, so we begin by examining the magnetic properties of a classical atomic electron of charge
—e orbiting a nucleus in a circle of radius r with speed v:

M

Figure 6: Magnetic moment produced by a current loop.

The orbiting electron produces a current I =chargex(no. of circuits/sec) = (—e) x (v/2nr)
circulating around a loop of area A = 7r?, causing a dipole magnetic field just like that of a
tiny bar magnet oriented perpendicular to the orbital plane, with a magnetic moment:

ev 5 e e L

M:IA:—%T(T :_2memevT:_2meL:_'uBﬁ:_7L (93)
or in its full vectorial form,
M = —MB% = —vL for an orbiting e~ (94)
where v = up/h is the gyromagnetic ratio and
1 Bohr magneton = up = ch =927 %1022 J T~' (Joules per Tesla) (95)

Me

We have established an important result: because the magnetic moment is proportional to the
angular momentum, any measurement of the magnetic moment is at the same time a measure-
ment of the angular momentum multiplied by the gyromagnetic ratio. It turns out that this is
true whether we are talking about orbital or spin angular momentum or a combination of both:
the only difference resides in the numerical values.

If we place our atomic dipole in a magnetic field it will experience a force, which we can
express as a potential emergy:11

Emag = —B.M (96)
vB.L for an orbiting e~ (97)
= vB,L, for an e~ and z—axis along B (98)

=
=)

This term, with L, — iz, is added to the Hamiltonian and, acting on an eigenstate of bot
and L,, gives an additional energy to the eigenstate,

Ermeg = ~hmB, for an e~ and z—axis along B (99)
= hwrmy for an orbiting e~ (100)

1See Appendix C.1 and Figure 10 for a simple derivation. The negative gradient of this potential gives the
force F on the dipole. In general a force acting on the dipole will produce both linear and rotational motion - the
former is zero in a uniform field; the latter is caused by a torque, r x F # 0, which is present even in a uniform
field, causing precession of the dipole - see Appendix C.2 and Figures 11, 12, 13.
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Thus, we see that the energy corresponds to a characteristic frequency, the Larmour frequency,
which will appear as the resonant frequency of radiation needed to induce the angular momen-
tum to change by one unit of & in magnetic resonance experiments. This is also the frequency
with which a classical dipole precesses about the direction of the magnetic field - see Appendix
C.2 and Figures 11, 12, 13, where we show that both the classical components L, and L, precess
about the z—direction of the magnetic field with the Larmour frequency; and quantum mechan-
ically it is the expectation values (il) and (f/y) which precess at this frequency- see Appendix D.

(9) THE ZEEMAN EFFECT - EVIDENCE FOR AZIMUTHAL QUANTIZATION
AND FOR ELECTRONS IN ATOMS.

Since the application of a magnetic field changes the energy of orbiting electrons, it also has
an interesting effect on spectra. Historically this was the first evidence for angular momentum
quantization as well as for the role of electrons in producing atomic spectra. It also provided
early hints of angular momentum 1/2. We have shown that for an atomic electron in a quantum
state labelled by the angular momentum quantum numbers ¢, m, the application of a magnetic
field shifts the energy by

AFEn. = ~hmB, with my=—-¢,—¢+4+1,...¢ (101)
= hwrmy (102)

Now consider two energy levels in an atom, one the ground state with ¢ = 0, the other with
¢ = 1. In the absence of a magnetic field the ¢ = 1 level is 3-fold degenerate: there are three
states, all with £ = 1, but with my = —1,0,+1, and all with the same energy. Thus there is only
one spectral line at a frequency v corresponding to the energy difference £ — Ey = hry between
the two levels. Now with an applied magnetic field the £ = 0,my; = 0 and £ = 1, my = 0 levels
remain unchanged because m;, = 0 gives E,,,, = 0; but the two £ = 1,m, = —1, +1 levels shift
down and up by §F = hwy, since my = 1. The result is three separate levels where one existed
before: the magnetic field has lifted the degeneracy and created two additional spectral lines
on either side of the original line. The three lines illustrated in Figure 7 correspond to the
normal Zeeman effect. Spin and other aspects of the magnetic interactions in an atom lead to
complicated Zeeman patterns known as the anomalous Zeeman effect. The observation of the
Zeeman effect was an important milestone in atomic physics because it provided evidence for the
quantization of angular momentum and for the electron being in the atom and directly involved
in the production of spectral lines: the splitting is both proportional to the applied magnetic
field and the charge to mass ratio e/m,.. The measured splitting gave the same value for e/m,
as had been obtained in studies of electron beams ( beta rays), providing a direct window into
the atom. The Zeeman effect is widely used in astronomy to measure large magnetic fields in
stars.
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(10) THE STERN-GERLACH EXPERIMENT & ELECTRON SPIN.

It was Otto Stern in 1921 who proposed to use the effect of an inhomogeneous magnetic
field on a magnetic dipole to measure the magnetic moments of atoms. If B = B(z, y, z) then,
in addition to a torque the field will exert a net force on the dipole because the little magnet’s
north and south poles are in slightly different fields. In all our considerations we find it most
convenient to choose the z—axis to lie along the direction of the magnetic field, B = (0,0, B,).
As usual, the force is obtained from the gradient of the potential (see Appendix C.2 and Figure
14 for a derivation):

F = —VEnp,
V(M.B)
= V(M.B,) with z—axis along B

- 9B, OB, 8Bz>
B Mz(@a:’ oy ' Oz

In the Stern-Gerlach experiment the magnet poles are shaped to produce a magnetic field that

varies rapidly in the z—direction only, B, = B,(z), '2 so the force also acts in the z—direction:
0B
F = (0,0, M;—~)
0z
0B, . e
= (0,0, —’yLza—) classical orbiting e (107)
z
0B, . P
= (0,0, —7hmg8—) quantum mechanical orbiting e (108)
z

where, in the last step, we have introduced the QM quantization rule for the z—component of
orbital angular momentum. The 1922 Stern-Gerlach experiment was performed with a beam of
neutral '3 silver atoms, the inhomogeneous magnetic field being produced by one of the poles
having a razor-sharp pointed face. The details are shown in the accompanying Figures 8 & 9
which also show the original results. Since the silver atoms’ magnetic moments are randomly
oriented in the incident beam, the classical expectation was that there be a continuous range of
deflections, reflecting the continuous distribution of L, values in the beam. The QM prediction is
that a discrete set of deflections should result from the quantization of orbital angular momentum
with 2¢ 4+ 1 possibilities corresponding to my = —¢,—£ + 1,...0,...¢, including zero deflection
for my = 0. In fact no zero deflection was seen and only 2 deflected beams, one above and one
below the expected zero deflection, inconsistent with integral values of ¢ but suggesting instead
the value 1/2 to give 20+ 1 = 2.

This experiment and many other hints from atomic spectra and the Zeeman effect led to
the Goudschmidt-Uhlenbeck suggestion in 1925 that in fact the electron has an intrinsic spin
angular momentum 7/2. The Stern-Gerlach experiment on Ag and later ones on Cu, Au, Na,
K, Cs and H finds its explanation in the fact that all these atoms have closed electron shells
plus one extra valence electron. The closed shell contributes a net zero angular momentum and
the valence electron has zero orbital angular momentum, £ = 0, but 1/2 unit of spin angular
momentum. The atom as a whole therefore has a total angular momentum % /2 due solely to the

2Tn the experiment depicted in Figure 8 the beam travels along the y—direction, with the field uniform along
this direction, although there is a small x—component to the field which does vary slightly with both z and z. In
practice these effects can be seen as distortions in the shape of the outgoing beam seen at the detector as shown
in the figure, but do not obscure the main effect seen due to the z variation.

131t is essential to use a neutral beam in this experiment otherwise the relatively weak deflections due to the
magnetic dipole interaction would be completely masked by the large deflections caused by a charged beam passing
through a strong magnetic field.
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spin of the valence electron, and it is its accompanying spin magnetic moment which is being
measured in the Stern-Gerlach experiment. Thus the experiment provided evidence both for the
existence of electron spin and for the azimuthal quantization of angular momentum. However
there was at least one more surprise: the electron also has twice the magnetic moment expected
from the analogy with orbital motion. This experimental result is expressed in terms of the

g-factor, g5 defined by:

S
M, = —gshpy = —vS for an e~ (109)

The modern value for the electron is g = 2.002381304386 4+ 0.000000000020 corresponding to
a spin magnetic moment of very nearly 1 Bohr magneton: the factor of 1/2 from the spin S is
almost exactly cancelled by the 2 from the g-factor. This result has no classical explanation,
but the value g5 = 2 is a consequence of Dirac’s relativistic equation for the electron; the small
correction is actually in agreement with modifications calculated from Quantum Electrodynam-
ics, the relativistic extension of quantum mechanics to the interaction of photons and electrons.
Other particles in nature have been found with spin-1/2, including the proton and the neutron.
Because their masses are some 1800 times larger than the electron the nuclear magneton is
smaller by that factor:'*

1 Nuclear magneton = py = ;—h =5.446 x 107 up = 5.05 x 10727 J 7! (110)
m

p

with g, = 5.586 and g, = —3.826. The reason these particles have g-factors so different from
the canonical value of 2 given by the Dirac equation is because the strong interactions play a
powerful role in giving these particles a finite size and a complicated and measurable structure
- they are surrounded by clouds of so called virtual particles such a pi mesons.

For a spinning particle such as an electron in an atom which also has orbital angular mo-
mentum, the magnetic moment is the vector sum:

= —%(L +9sS) forane . (112)

Note finally that all our previous expressions for the effects of a magnetic field on a dipole
produced by orbital motion also hold for the spin magnetic moment with the replacements
L — S and my — myg. In particular, for an electron placed in a magnetic field the energy shift
due to the interaction with its spin magnetic moment is, since g; ~ 2 to high accuracy:

FEmeg = Yhm,B, for an e~ and the z—axis along B (113)
= gsupB,mg (114)
= hwsms, where w, =B, = gs;;B B, (115)

Again, we see that the energy corresponds to a characteristic frequency, but for the electron
with g5 ~ 2, w, is twice the Larmour frequency. This frequency will appear as the resonant
frequency of radiation needed to induce the spin angular momentum to change by one unit of &
in magnetic resonance experiments. The proton will give a similar expression with the opposite
sign, but with the much smaller nuclear magneton giving a much lower energy. It is primarily
the spins which are involved in ESR and NMR experiments.

M Beware signs: we have used an eplicit minus sign up to this point for the electron’s magnetic moment, so
it’s g, is positive. To apply the above equations to the proton we have to remove this minus sign in appropriate
places. This doesn’t cause any confusion in practice.
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APPENDIX A: MATRIX ELEMENTS OF ANGULAR MOMENTUM
OPERATORS - GENERAL EXPRESSIONS.

We shall now find expressions for the matrices representing the angular momentum operators. 15

We know that the operator J+ is the raising operator, generating from 4, ,,, with J, eigenvalue

fim, the next state up the ladder, J+¢],m]. with eigenvalue fi(m;+1). But the state so generated
is not normalised and requires a normalising factor NV to become so:

T+ Pjm; = N Pjm, 41 (116)
where both 1; n, and 9;,, 11 are normalised eigenstates. Thus,
Tithim PPz = N2 [ [thim 11|?d*z = N? since 1, 41 is normalised (117)
J,m;j J,mj+1 J,mj+1 .
= /(j+¢j,mj)*j+¢j,mj d’zx
= /(¢j,m].)*ﬂ_f+¢j,mj d®z  using definition of adjoint,
= /w;f’m], j_j+1/1j7mj dz  using j\j_ = J_
_ / Vi, (% = T2 = B )y, &
using the identity j,jJr =J2- jZQ —hdJ,
= WG+ D) = mylmg + D] [ 6, i, &

since T,bj,mj is an eigenstate of J? and J,

= R*[j(j +1) —mj(m; +1)] since the eigenstate is normalised(118)

leading to
= hlj(G +1) — mj(m; + 1)]'/? (119)

A similar argument can be carried out for the state one step down the ladder, j_wj,m]., giving
finally for the normalised eigenstates,

Titbjm; = LG +1) = my(mg £ D) s (120)
The matrix elements for the raising and lowering operators then follow:'6
(Ji)m9 m; = /w;:m; Jiqzbj,mj Az

= BLG+1) = milm; D] [ i1 &
since 1, is an eigenstate of J% and jz
= A[G+1) = my(my £ ]2 G s

since the eigenstates are orthonormalised. (121)

5By using the notation J and 4, m; we are emphasising that the final expressions are generally valid and can be
proved so by using the Dirac formalism, although the integrals only have meaning for orbital angular momentum
and the eigenstates of L and Lz, ¥, m; = =Y mjs with the identifications j = £ and m; = my.

'S The states on the j—ladder, 1;, m; are orthonormal as we know in general for eigenstates of Hermitian operators
and as we have seen explicitly for eigenstates of orbital angular momentum:

* 3
/szmgq/)j’mjd ZITZ/Y Y]m] 1'—(5m ymj
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We are now in a position to find the matrix elements of the angular momentum operators jx
and Jy from those of Jy using

. = Jp+il, (122)
N SN 1 ,~ -

giving for J, and J,, J, = §(J++J,), (123)
N 1/~ -

J, = E(J+—J_). (124)

The result, despite its complicated appearance, is very simple when evaluated for individual
cases:

(J:L’)mg,mj =35 {[](] + 1) - mj(mj + 1)]1/2 5m9,m]‘+1 + [](.7 + 1) - mj(mj - 1)]1/2 5m9,mj—1}

2

(125)

hoo.,. o

(Jy)mg,mj = 2% {[](] +1) - mj(mj + 1)]1/2 5m;.,mj-|—1 [ +1) - mj(mj - 1)]1/2 5m;.,mj—1}
(126)
Since the states on the j—ladder are eigenstates, their matrix representations are diagonal:

(Jz)m;.,mj = hmj 5m;.,mj (127)
(JQ)m9 mj T hQ](] + 1) 5m; ,m;j (128)

The hard work is now complete: we have found general expressions for all the matrices rep-
resenting the angular momentum operators in Heisenberg’s matrix quantum mechanics.!” The
enormous power of the methods used should be appreciated: without knowing anything about
the physical nature of spin, except that it is a form of angular momentum giving the magic mul-
tiplicity 2 and suggesting j = 1/2, we are now in a position to write down explicit expressions
for the spin operators and the wave functions describing the quantum mechanics of the spin
degrees of freedom of particles ranging from electrons to quarks.

APPENDIX B: MATRIX ELEMENTS OF ANGULAR MOMENTUM
OPERATORS - THE CASES j=1/2 & j=1.

Using the general expressions obtained above in equations (26) to (29), we now list the first
two sets of matrix operators representing the abstract quantum mechanical operators J:

j=13, mj=—1/2,41/2| The matrices are (2j + 1) x (2j 4+ 1) = 2 x 2—dimensional:

(Je)ijza72 (Ju)ija,—1)2 no (01
I, = : : .y 129
( (Jo)—1/2172 (Jx)—1/2,-1/2 2 1o (129)

Notice how the diagonal elements of the matrix are zero because the kronecker deltas require
m'; = mj = 1 # m;. Similar considerations apply to J,, giving:

J
g ( (S22 (Jy)ijz,—1/2 )
L

130
Jy)1y2,072 (Jy) 172,212 (130)

1 0
( 0 1 ) (131)

"In the process we have solved a huge and sophisticated problem in the mathematical theory of groups: we
have found all the irreducible representations of the orthogonal group in three dimensions, the rotation group

0(3).

o[t
VR
. O

o |
.
N~

The diagonal matrices are easily obtained as:

J, = ( ((Jz)1/2,1/2 (J2)1/2,-1/2 )

NS+

J2) 12172 (J2)-1/2,-172
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32) (32), o . (10
o [ @i Phpop ) 132
< (I2) 1212 (3D _1/2,-1)2 1 01 (132)

j=1, m;=-1,0,+1 ‘ The matrices are (25 + 1) x (25 + 1) = 3 x 3—dimensional:

(Jo)in (T (Ja)i,-1 010
Jr = (Jo)oa  (Ja)opo  (Jz)o,—1 =L 1101 (133)
(Jo)=11 (Jz)=10 (Jz)-1,-1 010

Again the diagonal elements of the matrix are zero because the kronecker deltas require m} =

m; £1 # mj; but they also require the elements 2 steps away from the diagonal to vanish.
Similar considerations apply to .Jy, giving:

(Jy)ii (Jyo  (Jy-1 0 —i 0
Jy = (Jy)og  (Jyoo  (Jy)o—1 = % i 0 —i (134)
(Jy)—1,1 (Jy)-10 (Jy)-1,-1 0 i 0
The diagonal matrices are easily obtained as:
(Jo)in (Lo (o)1 1 0 0
J. = (Lo (Jo)oo  (J2)o,—1 =h [ 00 0 (135)
(J2)-11 (J2)-10 (J2)-1,1 00 —1
I I (IH1-1 1 00
J? = Io1 oo (Io, = 2h? 010 (136)
(I*)-1n (310 (IP)-1 00 1

That these matrices have all the properties required of angular momentum operators can now
be checked explicitly. Thus, for the spin-1/2 matrices it is easy to check that their commutators
are precisely the same as those of the angular momentum operators. Thus we find another
way to represent operators in QM: instead of using differential operators, Heisenberg’s QM uses
matrices, and the failure of some operators to commute is here realised through the well known
corresponding property of matrices. For angular momentum there is a particular simplification:
the matrices are finite dimensional so that there is also a finite number of eigenstates. '

'8 Compare with the case of the Hamiltonian operator for the infinite square well or the harmonic oscillator
where there is an infinity of eigenstates and therefore the matrices would be infinite-dimensional.
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APPENDIX C: CLASSICAL TREATMENT OF SPIN PRECESSION
IN A MAGNETIC FIELD.

(C.1) Energy of a magnetic dipole in a magnetic field.

An orbiting charged particle or a spinning particle possesses a magnetic moment M., which
can be pictured as a tiny bar magnet with the vector M pointing from the South to the North
pole. In Figure 10 we place this dipole in a uniform magnetic field B, whose direction we choose
as the z—axis. Even though isolated magnetic monoples do not seem to occur in nature, a
magnetic dipole can be thought of as a North pole with a magnetic ‘charge’ +m separated by
a distance 2r from a South pole with a magnetic ‘charge’ —m. The dipole moment is then
M = mx(the separation)= 2mr or, taking the vector separation 2r to point from S to N,

M =2mr (137)

If our dipole is at an angle 6 to the uniform magnetic field B = (0,0, B,) we can find the force
exerted by the field on each monopole from a law exactly like that for electric charges in an
electric field: just as an electric charge ¢ in an electric field €, experiences a force F, = ge,, so
a monopole of magnetic charge m experiences a force F, = mB,. These forces, acting in the
direction of the fields (chosen as the z—direction), can be derived from potentials (ie. potential
energies),

_ al?elec

Eoee = —qey2 gives a force F, = 3 = (¢, (138)
z
E _ . _ OEmag _
mag = —mB,z gives a force F, = ——, = mB, (139)

Taking the origin of coordinates at the centre of the dipole, we can now find its total potential
energy in the field by summing up the energies of the North pole situated at z = r cos 6 and the
South pole situated at z = —r cos 6:

Bmgg = Bim+E_m
—mB,rcosf — (—m)B,(—rcos )
—(2mr) cos 6B,
= —(Mcos#)B,  where the dipole moment is M = 2mr
= -MB (140)

where, in the last step we recognised 6 as the angle between the vectors B and M. This
expression is actually also valid in an inhomogeneous field and is used in section 9 of the text
to obtain the forces acting on the dipole in the Stern-Gerlach experiment.

19T use the notation L throughout this Appendix because all classical angular momentum is orbital angular
momentum. However all the results carry over to quantum mechanics provided due care is taken, so they apply
both to orbital, L, and spin, L — S, angular momentum. To convert the equations to spin we need only make
the replacements L — S, £ — s (s = 1/2 for spin 1/2), my — ms (ms = +1/2 for spin 1/2), and the Larmour
frequency is different, wr — ws; the gyromagnetic ratio is represented by the same symbol, -, for both cases, but
has different values, v = ug/h for orbiting electrons, v = gsus/h = 2up /h for spinning electrons and v = gsun /h
for neutrons and protons.
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(C.2) Dynamics of a dipole in a uniform magnetic field.

We begin with a quick and dirty derivation of the classical law for angular motion:2’ given
the angular momentum vector, L = r x p, let us find its equation of motion using Newton’s
second law:

d_p_ dr

i F where p= m—y (141)
Taking the time derivative of the angular momentum,
a _ i(r X Pp)
it~ at" P
dr DT X dp
= _ r _
at " P dt
1
= —(pxp)+rxF using Newton II
m
= rxF (142)

In the penultimate step we recognised that the momentum is mass times velocity, ie. p =
mdr/dt; the result is the term with p x p = 0 used to obtain the last line. The right hand side
is essentially the moment of the force acting on the particle which is known as the torque T,

dL
E:I‘XFEI‘ (143)

In Figure 11 we show this dipole in a uniform magnetic field B, whose direction we choose as
the z—axis. The magnetic moment experiences a torque I' given by (see Figure 12):

r=MxB (144)

First let us see how this result is obtained. If we place our dipole at an angle 6 to a uniform
magnetic field B we can find the torque exerted by the field from the law exactly like that
for electric charges in an electric field: the force on a monopole charge £m is £mB. Only the
components of these forces perpendicular to the dipole contribute to its rotation; the components
along the dipole (ie. along r) balance exactly in a uniform field. In our Figure 11 the the forces
act anticlockwise on both poles, giving a total torque, in the anticlockwise sense,

I'=2mrBsinf = MBsin#, (145)

where we used M = 2mr. From the figure we notice that this sense of rotation is also the
direction of the vector cross product M xB; moreover this cross product has the magnitude of
the torque since the angle between dipole moment and magnetic field is . Hence we arrive at
the general result quoted above for the torque, which we now apply by choosing the z—axis to
lie along the direction of the magnetic field, B = (0,0, B,),

r = MxB (146)

= —yLxB for an orbiting e~ (147)

= —v(Ly,—L.,0)B, for an orbiting e~ (148)

This torque clearly causes a precession about the z—axis. 2! The angular frequency of this
precession, the Larmour frequency, is

wr="2B, =B, (149)

h

20T am considering only a single point particle, which is the case of interest to us, but the results hold more
generally.

2L A familiar example of precession is that of a top or gyroscope, where the role of the magnetic field is played
by the gravitational field.
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Proof 1: This is an elementary proof based on Figure 13 where, in a time dt, the dipole is seen
to rotate through an angle dp = wydt about the z—axis. The change in angular momentum dL
is then determined by the lever arm, which is the projection of the vector L pependicular to the
z—axis, Lsin#:

dL = (lever arm) X (wgdt)
= Lsinfwrdt (150)
This gives us an expression for the vectorial rate of change of angular momentum which can
be compared directly with that given in equation (148) to give the Larmour frequency in equa-

tion (149).
Proof 2: Using Newton’s second law for rotational motion,

dL

we obtain for the z— and y—components,
dL, d’L, dL
— _~B.L ——r_— _ B, —% 152
dt TPy i TP (152)
dL d’L dL
= t1B:ls g = B (153)

where we took the time derivative of each equation to get the equations on the right. Now we
can separate the two components of angular momentum by substituting for the right hand sides
of these equations from the original equations. We then recognise the result as classical simple
harmonic oscillator equations with the Larmour frequency:

d’L,
5 = ~(yB.)? Ly = —w? L, (154)
d*L
dt;’ = —(vB,) Ly = —w} L, (155)

Thus these two components of angular momentum rotate together about the z—axis with angular
frequency wr,, while the z—component remains constant. A quantum mechanical treatment given
in Appendix D yields the same result, provided we replace the classical angular momentum
components L, and L, by their corresponding quantum mechanical expectation values (il) and
(f/y) These results will be used later when we discuss Electron Spin Resonance (ESR) and

Nuclear Magnetic Resonance (NMR).
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APPENDIX D: QM TREATMENT OF SPIN PRECESSION
IN A MAGNETIC FIELD.

We have seen that a classical dipole in a magnetic field precesses with the Larmour frequency,
and that the same applies to the QM case of a magnetic moment produced by orbital motion. It
may not be so obvious that the same holds for a magnetic moment produced by spin, especially
as electron spin is so difficult to understand classically. Here we show how to study the problem
using QM, while at the same time illustrating the role of the Schriodinger equation in spin
dynamics and showing that it is the quantum mechanical expectation values that precess. In
an applied magnetic field the spin state y is altered by the fact that the energy changes. This
adds a term to the Hamiltonian which acts only on the spin part of the wave function:

Hy=-M,B= @@ = wsgaz (156)
The spin part of the wave function x(¢) is obtained by demanding it satisfy an appropriate
TDSE which takes account of the above interaction, and which induces a time-dependence:

(b = ( 28; ) where  Hyx(t) = in 20 (157)
ie wsgazx(t) :wsg ( (1) _01 ) ( Z; ) =1h ( 2 ) (158)

h C1 . él
Hence, Wsy ( e ) =1h ( iy ) (159)

ie. ¢ = —z%cl and ¢ = +z'%02 (160)
Hence the solutions, ¢ (t) = ae”™*?  and,  cy(t) = bet™st/? a>+b*=1 (161)

where the constants a and b are chosen to normalise the wave function and to satisfy the initial
(t = 0) conditions. Two cases illustrate the relation between the classical and quantum pictures:
Case (1) Suppose the wave function is initially in the spin up eigenstate x4 of S,

e—iwst/Q
c1(t=0)=1,c0(t=0)=0, hence a=1,b=0 and x(t)= 0 (162)

Now, this remains an eigenstate of S,, with eigenvalue +h/2, for all times; all its expectation
values are time-independent and so it is a stationary state with no precession:

(S.) =x't)S.x(t) = ZXTUzX

— g( eHiwst/2 () ) ( (1) _01 ) ( eiu(;st/2 )
( etiwst/2 () ) ( ei“(;stﬂ )

(163)
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+iwst/2
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. 0
+iwst/2 )
e 0 ) < o—iwst/2 )
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(Se) = (164)

Similarly (Sy) = 0. Thus we have the perhaps surprising outcome that a pure spin eigenstate
does not precess at all, despite the fact that in the quasi-classical pictures of the quantum
rules the spin vector doesn’t point exactly in the z—direction. However the expectation values
correspond precisely to the classical values: if the classical dipole is exactly aligned along the
z—axis (allowed classically) then not only does the spin have zero projection in the z— and
y—directions, but there is no torque acting and therefore no precession.

Case (2) Suppose the wave function is not a pure eigenstate but initially an equal mixture of
spin up and spin down:

1 1 1 —iwst/2
alt=0)=clt=0) = =5 hence a=b=—5, and x(t)=—5 ( Z+iwst/2 ) (165)

Since this state is an equal mixture of spin up and spin down it is not surprising to discover
that its average projection on the z—axis is zero:

h

<§z> = XT(t)SzX(t) = EX OzX

h . » 1 0 e—z’wst/Q
- 5( ehivt/? emintl2 ) ( 0 -1 > ( etiwst/2

) . . e wst/2
_ )2 iwat/2
- 5( ettt etent] ) ( _ptiwst/2

(5.) = 0 (166)
c h
(Sz) = x'(1)Sax(t) = Sx'oax
A . ) 0 1 e wst/2
—- +iwgt/2 —iwst/2
_4(6 /2 e /)<10><6+iwst/2>
+iwgt/2
= G ) (220
_ Z (e+2iwst/2 + 672mst/2)
~ h
(Sz) = §coswst (167)
Similarly,
(5,) = %sinwst (168)

Here we have the analogue of the classical situation where the dipole lies in the  — y plane
with zero z—component: the spin vector will then precess around the z—axis. The QM example
shows that indeed the expectation values have precisely these properties; moreover we now see
that the QM precession frequency is ws ~ 2wy, for an electron.
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