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(68), (69) on p.8 of notes on `ANGULAR MOMENTUM IN QUANTUM MECHANICS'.):f� �h22�r2r + V (r)g (r; �; ') = E  (r; �; '); (3)i.e., (� �h22�  �2�r2 + 2r ��r!+ bL22� r2 + V (r))  (r; �; ') = E  (r; �; ') (4)whi
h be
omes, for the rigid rotator, bL22�a2  (�; ') = E  (�; ') (5)where we have used the assumption that r = a and the fa
t that the angular momentum operatoroperates only on the angular variables. The �nal result isbL2  (�; '); = 2�a2E  (�; ') (6)= 2IE  (�; '); I = �a2 is the moment of inertia of the mole
ule. (7)We immediately re
ognise this equation as an eigenvalue equation: it states that  (�; ') is aneigenfun
tion of the operator bL2 with eigenvalue 2IE. But we also know from the theory ofangular momentum 1 that this operator has eigenfun
tions Y`;m(�; ') and eigenvalues �h2`(` +1); ` = 0; 1; 2 : : :. Hen
e the rigid rotator eigenfun
tions are the spheri
al harmoni
s and theenergy eigenvalues of the rigid rotator are quantised:E` = �h22I `(`+ 1); ` = 0; 1; 2 : : : (8)Typi
al values for these energies are very small, lying in the range 10�5 ! 10�4 eV. For anastronomer this is parti
ularly signi�
ant be
ause the 
orresponding temperatures (E = kT ) liein the range 1! 10K, 
omparable to interstellar 
loud temperatures (10! 100K being typi
al),so that rotational ex
ited states 
an easily be formed from 
ollisions. The most abundantmole
ule in the interstellar medium after mole
ular hydrogen, H2, is CO with B = �h2=2I =2:4� 10�4 eV. A CO mole
ule �nding itself in the `�th rotationally ex
ited state, 
an de-ex
iteby dropping down to one of the lower rotational levels, thereby emitting a photon. Sin
e a photonhas spin 1, it 
arries away angular momentum 1�h and therefore the only radiative transitionsallowed are those whi
h 
hange ` by one unit and so 
onserve angular momentum; in additionthe z�
omponent, m may or may not 
hange. This leads to the sele
tion rule for pure rotationaltransitions whi
h result in single photon emission or absorption,�` = �1 for emission (�) or absorption (+) of 1 photon; with �m = 0;�1.Thus, for pure rotational transitions, the energy h� = �E of an emitted photon resulting froma transition from `+ 1! ` is 2h� = �E = E`+1 �E` (9)= �h22I (`+ 1)(`+ 2)� �h22I `(`+ 1) (10)= 2 �h22I! (`+ 1) (11)= 2B(`+ 1) where B � �h22I (12)1See equation (71) on p.9 of notes on `ANGULAR MOMENTUM IN QUANTUM MECHANICS'.2Astronomers usually use the notation J instead of `.2



For CO the ` = 1 ! ` = 0 transition 
orresponds to the emission of a photon of frequen
y of115GHz and a wavelength of 2:6mm.
6
?

Absorption�` = +1 h� = �E = E`+1 �E` = 2B(`+ 1)�Emission�` = �1 h� = �E = E` �E`�1 = 2B`� B = �h22I
Ground state

` Eigenvalue

` = 0` = 1` = 2` = 3`� 1`̀+ 2

Figure 2: The rotational energy levels of a diatomi
 mole
ule modelled as a rigidrotator. Allowed pure rotational transitions with �` = �1 are shown together withexpressions for the frequen
y of the photon emitted in downward transitions orabsorbed in upward transitions.Figure 3 shows an example of the rotational spe
trum of HCl in absorption, �` = +1, wherethe line frequen
ies 
orrespond to the absorption minima. The �rst line seen is the ` = 1 ! 2transition at �� = 4 �B = 42:36 
m�1 
orresponding to a wavelength of 236�m in the infrared;su

eeding lines arise from ` = 2 ! 3; 3 ! 4; 4 ! 5; : : : transitions. The spa
ing of the linesis not exa
tly that of the rigid rotator model but de
reases with `. This is due to the e�e
tof 
entrifugal for
es, with larger angular momenta 
ausing the interatomi
 spa
ing to in
rease:this in
rease in a then in
reases the moment of inertia, I, and hen
e de
reases B.
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(2) ROTATION-VIBRATION SPECTRA.In the approximation that rotational and vibrational motion are independent we 
an writethe total energy of a diatomi
 mole
ule in the vibrational state n and rotational state ` as3En;` = Evib +Erot (13)= h�0(n+ 12) + �h22I `(`+ 1); n = 0; 1; 2 : : : ; ` = 0; 1; 2; : : : (14)For diatomi
 mole
ules Evib � 0:5 eV� Erot � 10�4 eV; hen
e vibrational transitions will bein the infrared, rotational ones in the mi
rowave to millimetre wavelength region. The key tounderstanding vibrational, rotational and 
ombined rotational-vibrational transitions leading tothe emission and absorption of photons is again the sele
tion rules. In addition to the angularmomentum sele
tion rules already mentioned for pure rotational transitions there are also rulesdi
tated by the photon's parity and that of the energy eigenstates of the harmoni
 os
illator.These require that the vibrational quantum number 
an 
hange by no more than one unit,�n = 0;�1, while, be
ause the photon 
arries one unit of angular momentum (photon spin1�h), we must always have �` = �1. Thus the full set of sele
tion rules for pure rotational androtational-vibrational transitions are:�` = �1 with �n = 0, or �n = �1Transitions with �n = 0 are pure rotational transitions, whi
h we have already dis
ussed. Be-
ause the photon 
arries unit angular momentum there 
annot be pure vibrational transitions:any transition leading to either single photon emission or absorption must be a

ompanied bya 
hange of angular momentum; but when �n 6= 0 this 
an be either an in
rease or a de
rease�` = �1, whether the photon is emitted or absorbed: all that is required is that in emission themole
ule's total energy de
rease, while in absorption the energy in
rease. Figure 3 shows theallowed rotational-vibrational transitions in absorption for a diatomi
 mole
ule initially in thevibrational ground state n = 0. It is 
lear that the transitions break up into two distin
t sets:the R-bran
h, with �` = +1 and the P-bran
h with �` = �1.R-bran
h: �` = +1 �n = +1For n = 0! 1; `! `+ 1 �E = En=1;`+1 �En=0;`i.e. h� = h�0 + 2 �h22I! (`+ 1) (15)P-bran
h: �` = �1 �n = +1For n = 0! 1; `! `� 1 �E = En=1;`�1 �En=0;`i.e. h� = h�0 � 2 �h22I! ` (16)The pattern of allowed lines 
onsists of two sets 
entred about a frequen
y �0, with the line at �0being absent be
ause it 
orresponds to the forbidden �` = 0 transition (` = 0! 0; 1! 1, et
.).Figure 4 gives an example of the vibrational-rotational absorption spe
trum of HCl showing
learly the 
entral missing line at �0 with the P-bran
h lines extending to lower frequen
ies andthe R-bran
h to higher frequen
ies.3A more frequently used notation is J instead of ` and v instead of n. I use `; n be
ause these are the symbolswe used in dis
ussing orbital angular momentum and the SHO. Note also that �h!0 = h�0.5
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trum:
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yP (5) P (4)
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P (3) P (2) P (1)

2� 2Bh� -
�0 R(0) R(1) R(2)

2Bh� -
R(3)Figure 4: The rotation-vibration energy levels of a diatomi
 mole
ule modelled as in-dependent rigid rotator and harmoni
 os
illator. Allowed vibrational-rotational ab-sorption transitions with �n = +1 are shown: the R-bran
h 
orresponds to �` = +1,the P-bran
h to �` = �1. The missing line at the 
entre of the spe
trum o

urs atthe frequen
y �0 
orreponding to the forbidden �` = 0;�n = +1 transitions. Notethat the energy separation of the vibrational states, �h!0 = h�0, is not shown a
-
urately here: in pra
ti
e it is some 104 times greater than the separation of thelowest two rotational levels. 6
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APPENDIX: THE 2-BODY SCHR�ODINGER EQUATION.
������ Ir = r1 � r2
mq
0


nm2PPPPPPPPPPPPPPPPPPr2i ~m1������ r1�R-
Figure: Coordinate system for 2-parti
les.Consider the general problem of two parti
les intera
ting through a time-independent potentialdepending on their separation. The TDSE for the two-parti
le system is,bH	(r1; r2; t) = i�h�	(r1; r2; t)�t (17)where the two-parti
le Hamiltonian isbH = bp212m1 + bp222m2 + V (r1 � r2) (18)= � �h22m1r21 � �h22m2r22 + V (r1 � r2) (19)As usual for time-independent potentials we may separate out the time-dependen
e, obtaining:	(r1; r2; t) =  (r1; r2)e�iEtott=�h (20)where  (r1; r2) obeys the TISE with two-parti
le energy Etot,f� �h22m1r21 � �h22m2r22 + V (r1 � r2)g (r1; r2) = Etot  (r1; r2) (21)This 
ompli
ated looking equation 
an easily be simpli�ed using our physi
al intuition gainedfrom 
lassi
al me
hani
s. The two-parti
le system has two distin
t kinds of motion: the motionof the system `as a whole', by whi
h we mean the motion of the 
entre of mass (denoted 
m. inthe �gure); and the motion of the parti
les relative to one another. The former 
orresponds tothe 
entre of mass ve
tor R 
hanging; the latter to the relative 
oordinate ve
tor r = r1 � r2
hanging. The former should be free motion of a system with mass M = m1 +m2; the latterrelative motion in a potential V (r). To see how this happens in QM we transform the TISEfrom the 
oordinates (r1; r2) to new 
oordinates (R, r):4r = (x; y; z) = r1 � r2 (22)R = (X;Y;Z) = m1r1 +m2r2m1 +m2 (23)4The 
oordinates of the 
entre of mass are obtained by noting that the sum of the moments of the two separatemasses about the origin is m1r1 +m2r2 and should equal the moment of the total mass M = m1 +m2 a
ting atthe 
entre of mass, MR. This gives the equation for R.15



These are very simple linear transformations, with x = x(x1; x2) and X = X(x1; x2), so thatthere is no mixing of x; y and z 
oordinates, and partial di�erentiation enables us to transformthe di�erentials without diÆ
ulty:��x1 = �X�x1 ��X + �x�x1 ��x = m1m1 +m2 ��X + ��x (24)��x2 = �X�x2 ��X + �x�x2 ��x = m2m1 +m2 ��X � ��x (25)Sin
e the 
oeÆ
ients of the di�erentials on the right are just 
onstants the se
ond di�erentialsare easily obtained by `squaring',�2�x21 = m21(m1 +m2)2 �2�X2 + �2�x2 + 2 m1m1 +m2 �2�X�x (26)�2�x22 = m22(m1 +m2)2 �2�X2 + �2�x2 � 2 m2m1 +m2 �2�X�x (27)Exa
tly similar expressions 
an be found for the y and z 
omponents. These two expressionsare very similar ex
ept for the inter
hange m1 $ m2 and the 
ru
ial sign di�eren
e in the 
rossterms, whi
h therefore 
an
el:� �h22m1 �2�x21 � �h22m2 �2�x22 = � �h22(m1 +m2) �2�X2 � �h22 ( 1m1 + 1m2 ) �2�x2 (28)= � �h22M �2�X2 � �h22� �2�x2 (29)where M is the total mass and � is the redu
ed mass of the two-parti
le system:1� = ( 1m1 + 1m2 ) ie. � = m1m2m1 +m2 (30)M = m1 +m2 (31)The same 
an
ellations o

ur for the y and z 
omponents, leading to a TISE involving only thevariables R and r: f� �h22Mr2R � �h22�r2r + V (r)g = Etot  (32)whi
h is obviously separable by making the substitution (r1; r2) = �(R) (r) (33)Dividing, as usual by �(R) (r) and rearranging we �nd�h22M 1�(R)r2R�(R) +Etot = � �h22� 1 (r)r2r 1 (r) + V (r) (34)= E; a 
onstant, (35)where, sin
e ea
h side of the equation depends on a di�erent and independent variable, theymust equal some 
onstant, whose name is 
hosen as E sin
e it has the dimensions of energy.Writing Etot �E = E
m we obtain the promised equations,� �h22Mr2R�(R) = E
m�(R) (36)f� �h22�r2r + V (r)g (r) = E  (r) (37)16



The �rst equation is a TISE for a free `parti
le' of mass M and energy E
m; the se
ond fora `parti
le' of mass � in a potential V (r) with an energy E. The whole two-parti
le system'senergy Etot is the sum of these energies,Etot = E
m +E (38)The �rst equation obviously has the solution�(R) = e�iP:R=�h; where P is the momentum ve
tor, P2 = 2ME
m (39)whi
h is a plane wave momentum eigenstate representing the free motion of the two-parti
lesystem as a whole.The se
ond equation is the one that 
on
erns us here: for the the rotations of a diatomi
mole
ule we would use as our �rst approximation the rigid rotator - a rigid weightless rod joiningthe two masses with the magnitude of the ve
tor r remaining �xed, r = a, and no intera
tionbetween the parti
les, V = 0; for the vibrations of a diatomi
 mole
ule we would approximatewith a one-dimensional SHO potential, V (x) = �!20x2=2. In both 
ases the mass used would bethe redu
ed mass �. In a �rst approximation we will assume these two relative motions, rotationand vibration, are independent.
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