QUANTUM MECHANICS B PHY-413 Note Set No. 8
ROTATION-VIBRATION SPECTRA OF DIATOMIC MOLECULES.

(1) THE RIGID ROTATOR.

A diatomic molecule is made of two atoms bound together by an interatomic potential V' (r)
when separated by a distance r. The quantum mechanics of this two-particle system is dis-
cussed in the Appendix, where we show that the dynamics of the system can be separated into
two independent parts: an inessential centre-of-mass free motion of the system as a whole and
an interaction between the two atoms described by a TISE in the relative coordinate r for a
single ‘particle’ of reduced mass p in a potential V' (r):
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Figure 1: Diatomic molecule as rigid rotator.

This potential accounts for the forces between the two atoms. A very first approximation
assumes the binding is so strong that the two atoms are held rigidly at a fixed distance, r = a,
apart. Such a molecule can both travel as a free particle through space - a quantum mechan-
ically uninteresting motion - and rotate about its centre-of-mass. It is this rotation which is
described by the above equation. An improvement on this approximation would be to also take
account of small vibrations about the equilibrium separation r = a by using a simple harmonic
oscillator potential. Our approximation procedure will be to assume that these two types of
relative motion are independent, so that the total energy of relative motion is simply the sum of
rotational and vibrational energies. The latter we already know from the harmonic oscillator,
Eyip = (n+ 1/2)hwg; the former we now proceed to calculate. A more realistic approximation
would be to take account of both forms of motion simultaneously, including deviations from the
harmonic oscillator potential and the effects of centrifugal forces due to rotation. For the rigid
rotator the assumption that the distance r between the two atoms remains constant means that
the wave function only varies with the angular coordinates, 0, @, and not with r:

1/)(71’0’(»0) = ¢(9,<p) (2)

and that there is no potential; the condition r = a =constant plays the role of an effective
potential keeping the atoms at a fixed distance apart. The result is that in spherical polar
coordinates the derivatives with respect to r give zero contribution in the TISE (See equations



(68), (69) on p.8 of notes on ‘ANGULAR MOMENTUM IN QUANTUM MECHANICS’.):
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which becomes, for the rigid rotator, I P(O,0) = E(0,p) (5)

where we have used the assumption that » = a and the fact that the angular momentum operator
operates only on the angular variables. The final result is

L2(0,¢), = 2ua®E(0,¢) (6)
= 2IE4{(0,9); I=pa® is the moment of inertia of the molecule.  (7)

We immediately recognise this equation as an eigenvalue equation: it states that (6, ¢) is an
eigenfunction of the operator L? with eigenvalue 2/ FE. But we also know from the theory of
angular momentum ! that this operator has eigenfunctions Y7, (6, ¢) and eigenvalues h2e(0 +
1), = 0,1,2.... Hence the rigid rotator eigenfunctions are the spherical harmonics and the
energy eigenvalues of the rigid rotator are quantised:
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Typical values for these energies are very small, lying in the range 107°> — 10~ %eV. For an
astronomer this is particularly significant because the corresponding temperatures (E = kT') lie
in the range 1 — 10K, comparable to interstellar cloud temperatures (10 — 100 K being typical),
so that rotational excited states can easily be formed from collisions. The most abundant
molecule in the interstellar medium after molecular hydrogen, Hy, is CO with B = h2/2I =
2.4 x 10~*eV. A CO molecule finding itself in the /—th rotationally excited state, can de-excite
by dropping down to one of the lower rotational levels, thereby emitting a photon. Since a photon
has spin 1, it carries away angular momentum 17 and therefore the only radiative transitions
allowed are those which change ¢ by one unit and so conserve angular momentum; in addition
the z—component, m may or may not change. This leads to the selection rule for pure rotational
transitions which result in single photon emission or absorption,

Al = +£1 for emission (—) or absorption (+) of 1 photon; with Am = 0, £1. ‘

Thus, for pure rotational transitions, the energy hv = AFE of an emitted photon resulting from
a transition from £+ 1 — / is 2

hv =AFE = FEpq1—Ey (9)
h? h?
= 5(64— 1)(£+2) - 56(64— 1) (10)
h2
= 2 (ﬂ) (L+1) (11)
h2
= 2B({+1) where B= 27 (12)

!See equation (71) on p.9 of notes on ‘ANGULAR MOMENTUM IN QUANTUM MECHANICS’.
2 Astronomers usually use the notation J instead of £.



For CO the £ =1 — £ = 0 transition corresponds to the emission of a photon of frequency of
115 GHz and a wavelength of 2.6 mm.
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Figure 2: The rotational energy levels of a diatomic molecule modelled as a rigid
rotator. Allowed pure rotational transitions with A/ = +1 are shown together with
expressions for the frequency of the photon emitted in downward transitions or
absorbed in upward transitions.

Figure 3 shows an example of the rotational spectrum of HCI in absorption, A¢ = +1, where
the line frequencies correspond to the absorption minima. The first line seen is the £ =1 — 2
transition at 7 = 48 = 42.36cm™! corresponding to a wavelength of 236 ym in the infrared;
succeeding lines arise from £ = 2 — 3, 3 — 4, 4 — 5, ... transitions. The spacing of the lines
is not ezactly that of the rigid rotator model but decreases with £. This is due to the effect
of centrifugal forces, with larger angular momenta causing the interatomic spacing to increase:
this increase in a then increases the moment of inertia, I, and hence decreases B.
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(2) ROTATION-VIBRATION SPECTRA.

In the approximation that rotational and vibrational motion are independent we can write
the total energy of a diatomic molecule in the vibrational state n and rotational state ¢ as?

En,f = Evib+Erot (13)
1. h?
= h(n+g)+ g+ 1), n=0,1,2.., £=0,12,.. (14)

For diatomic molecules E,j, ~ 0.5eV>> E,, ~ 107*eV; hence vibrational transitions will be
in the infrared, rotational ones in the microwave to millimetre wavelength region. The key to
understanding vibrational, rotational and combined rotational-vibrational transitions leading to
the emission and absorption of photons is again the selection rules. In addition to the angular
momentum selection rules already mentioned for pure rotational transitions there are also rules
dictated by the photon’s parity and that of the energy eigenstates of the harmonic oscillator.
These require that the vibrational quantum number can change by no more than one unit,
An = 0,%1, while, because the photon carries one unit of angular momentum (photon spin
1%), we must always have A¢ = £1. Thus the full set of selection rules for pure rotational and
rotational-vibrational transitions are:

Al =41 with An =0, or An=+£1

Transitions with An = 0 are pure rotational transitions, which we have already discussed. Be-
cause the photon carries unit angular momentum there cannot be pure vibrational transitions:
any transition leading to either single photon emission or absorption must be accompanied by
a change of angular momentum; but when An # 0 this can be either an increase or a decrease
Al = +1, whether the photon is emitted or absorbed: all that is required is that in emission the
molecule’s total energy decrease, while in absorption the energy increase. Figure 3 shows the
allowed rotational-vibrational transitions in absorption for a diatomic molecule initially in the
vibrational ground state n = 0. It is clear that the transitions break up into two distinct sets:
the R-branch, with A/ = 4+1 and the P-branch with A/ = —1.

R-branch: Al =+1 An = +1

For n=0—=1,/4—=¢+1 AE = Ep—i41— Epn=oy
2

e hu = huo—i—Z(Z—I) (+1) (15)

P-branch: Al = —1 An = +1

For n=0—>1,/—=/¢/—-1 AE = En:175_1 — En:[]7é
h?
ie. hv = hyy—2 (ﬂ) 14 (16)

The pattern of allowed lines consists of two sets centred about a frequency vy, with the line at v
being absent because it corresponds to the forbidden A¢ = 0 transition (( =0 — 0,1 — 1, etc.).
Figure 4 gives an example of the vibrational-rotational absorption spectrum of HCIl showing
clearly the central missing line at 1y with the P-branch lines extending to lower frequencies and
the R-branch to higher frequencies.

8 A more frequently used notation is .J instead of £ and v instead of n. I use £, because these are the symbols
we used in discussing orbital angular momentum and the SHO. Note also that hwo = hvyg.
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Figure 4: The rotation-vibration energy levels of a diatomic molecule modelled as in-
dependent rigid rotator and harmonic oscillator. Allowed vibrational-rotational ab-
sorption transitions with An = +1 are shown: the R-branch corresponds to A/ = +1,
the P-branch to A/ = —1. The missing line at the centre of the spectrum occurs at
the frequency vy correponding to the forbidden A/ = 0, An = +1 transitions. Note
that the energy separation of the vibrational states, hwy = hry, is not shown ac-
curately here: in practice it is some 10* times greater than the separation of the
lowest two rotational levels.



Vibration-Botation Transitions

Transitions from the ground vibrational \ a—

state o the first excited stata of HC J'[-,,r
with a changa Aj = = 1 in rofational
angular mamantum,

Transitions v=0, | tov=1, -1 Transitions v=0, | 1o v=1, j+1

35CI j=1—=0 j=0—1

S?CI\ “

1

Centar frequency

T or v=0—+ v

){ VAVAY

1 | i
8.00 B.20 8.40 8.60 B.80 9.00 9.20 x1013

Frequency [Hz)

Analysis of the lines of the vibrational-rotational spectrum leads to estimates of both the
interatomic separation and the strength of the interatomic potential. I append the spectrum of
CO we obtained in the laboratory together with the solution to Problems 9, Q.1 showing how

this analysis is carried out.
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APPENDIX: THE 2-BODY SCHRODINGER EQUATION.

Figure: Coordinate system for 2-particles.

Consider the general problem of two particles interacting through a time-independent potential
depending on their separation. The TDSE for the two-particle system is,

~ ov it
HU(ry,ro;t) = ihi(rl’r% ) (17)
ot
where the two-particle Hamiltonian is
=9 =2
73 P1 P2
H = —+—= — 1
2m1 + 2m2 + V(I‘1 I‘Q) ( 8)
h? h?
= —— V- —V% + V(ry —r9) (19)

- 2m1 ! 2m2

As usual for time-independent potentials we may separate out the time-dependence, obtaining:
U(ry,ro;t) = h(ry, rp)e Frott/ (20)
where 1(rq, r9) obeys the TISE with two-particle energy Ejq,

h? K2
V2 — V24 V(r; —ry)}p(ry,r9) = Erop th(ry,10) (21)

B 2m1 2m2

This complicated looking equation can easily be simplified using our physical intuition gained
from classical mechanics. The two-particle system has two distinct kinds of motion: the motion
of the system ‘as a whole’, by which we mean the motion of the centre of mass (denoted cm. in
the figure); and the motion of the particles relative to one another. The former corresponds to
the centre of mass vector R changing; the latter to the relative coordinate vector r = r; — ry
changing. The former should be free motion of a system with mass M = mj + mo; the latter
relative motion in a potential V(r). To see how this happens in QM we transform the TISE
from the coordinates (ri,r3) to new coordinates (R, r):*

r=(z,y,2) = ri—r (22)

m1r1+m2r2
R=(XY.2) = =

“The coordinates of the centre of mass are obtained by noting that the sum of the moments of the two separate
masses about the origin is mir; + marz and should equal the moment of the total mass M = mi + m2 acting at
the centre of mass, MR. This gives the equation for R.

15



These are very simple linear transformations, with z = x(z1,29) and X = X (z1,z2), so that
there is no mixing of z,y and z coordinates, and partial differentiation enables us to transform
the differentials without difficulty:

o0 _9Xx9 o0z6 _ _m 9 0 (24)
or;y 0x10X  Ox Oz my +mo 0X = Ox
0 _9X09 0z6 _ _m 9 0 (25)
O0xo 0ro0X  Oxzo Oz mi1+me 00X Oz

Since the coefficients of the differentials on the right are just constants the second differentials
are easily obtained by ‘squaring’,

0? m? 0? 0? my 0?
8—:1:% - (m1 +mo)? 0X2 + 02 + 2m1 + my 0X0x (26)
0? m3 0? 0? mo 0?
8—:1:% - (m1 +mo)? 0X2 + 0z2 2m1 + my 0X0x (27)

Exactly similar expressions can be found for the y and z components. These two expressions
are very similar except for the interchange m <> ms and the crucial sign difference in the cross
terms, which therefore cancel:

e LI e L h? 02 hQ( 1 1 )62 (28)
2my 0z7  2mg 023 2(my +mo)0X2 2 'my  my Ox?
n? 0% R’ 0
= ——— - — (29)
2M 0X? 2 Ox?
where M is the total mass and pu is the reduced mass of the two-particle system:
1 1 1 . mims
—=(—+4+— ie. = — 30
12 (ml mQ) a mi + msg (30)
M = mp+my (31)

The same cancellations occur for the y and z components, leading to a TISE involving only the
variables R and r:

h? _, h*_,
which is obviously separable by making the substitution

P(ri,r2) = ®(R) 9)(r) (33)
Dividing, as usual by ®(R) ¢ (r) and rearranging we find

1, /A P |
W@VR@(R) + Eiot e em T V(r) (34)
= FE. a constant, (35)

where, since each side of the equation depends on a different and independent variable, they
must equal some constant, whose name is chosen as E since it has the dimensions of energy.
Writing Ey,y — EE = E.p, we obtain the promised equations,

2
—f—MV§¢(R) = E®(R) (36)
2
{—S—Mvzwu)}w(r) = Ey() (37)
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The first equation is a TISE for a free ‘particle’ of mass M and energy E.,; the second for
a ‘particle’ of mass p in a potential V(r) with an energy E. The whole two-particle system’s
energy Fjy,; is the sum of these energies,

Eiot = Eem + E (38)
The first equation obviously has the solution
®(R) = e™PR/M - where P is the momentum vector, P2 =2ME,,, (39)

which is a plane wave momentum eigenstate representing the free motion of the two-particle
system as a whole.

The second equation is the one that concerns us here: for the the rotations of a diatomic
molecule we would use as our first approximation the rigid rotator - a rigid weightless rod joining
the two masses with the magnitude of the vector r remaining fixed, r = a, and no interaction
between the particles, V' = 0; for the vibrations of a diatomic molecule we would approximate
with a one-dimensional SHO potential, V (z) = pw2z?/2. In both cases the mass used would be
the reduced mass p. In a first approximation we will assume these two relative motions, rotation
and vibration, are independent.
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