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(68), (69) on p.8 of notes on `ANGULAR MOMENTUM IN QUANTUM MECHANICS'.):f� �h22�r2r + V (r)g (r; �; ') = E  (r; �; '); (3)i.e., (� �h22�  �2�r2 + 2r ��r!+ bL22� r2 + V (r))  (r; �; ') = E  (r; �; ') (4)whih beomes, for the rigid rotator, bL22�a2  (�; ') = E  (�; ') (5)where we have used the assumption that r = a and the fat that the angular momentum operatoroperates only on the angular variables. The �nal result isbL2  (�; '); = 2�a2E  (�; ') (6)= 2IE  (�; '); I = �a2 is the moment of inertia of the moleule. (7)We immediately reognise this equation as an eigenvalue equation: it states that  (�; ') is aneigenfuntion of the operator bL2 with eigenvalue 2IE. But we also know from the theory ofangular momentum 1 that this operator has eigenfuntions Y`;m(�; ') and eigenvalues �h2`(` +1); ` = 0; 1; 2 : : :. Hene the rigid rotator eigenfuntions are the spherial harmonis and theenergy eigenvalues of the rigid rotator are quantised:E` = �h22I `(`+ 1); ` = 0; 1; 2 : : : (8)Typial values for these energies are very small, lying in the range 10�5 ! 10�4 eV. For anastronomer this is partiularly signi�ant beause the orresponding temperatures (E = kT ) liein the range 1! 10K, omparable to interstellar loud temperatures (10! 100K being typial),so that rotational exited states an easily be formed from ollisions. The most abundantmoleule in the interstellar medium after moleular hydrogen, H2, is CO with B = �h2=2I =2:4� 10�4 eV. A CO moleule �nding itself in the `�th rotationally exited state, an de-exiteby dropping down to one of the lower rotational levels, thereby emitting a photon. Sine a photonhas spin 1, it arries away angular momentum 1�h and therefore the only radiative transitionsallowed are those whih hange ` by one unit and so onserve angular momentum; in additionthe z�omponent, m may or may not hange. This leads to the seletion rule for pure rotationaltransitions whih result in single photon emission or absorption,�` = �1 for emission (�) or absorption (+) of 1 photon; with �m = 0;�1.Thus, for pure rotational transitions, the energy h� = �E of an emitted photon resulting froma transition from `+ 1! ` is 2h� = �E = E`+1 �E` (9)= �h22I (`+ 1)(`+ 2)� �h22I `(`+ 1) (10)= 2 �h22I! (`+ 1) (11)= 2B(`+ 1) where B � �h22I (12)1See equation (71) on p.9 of notes on `ANGULAR MOMENTUM IN QUANTUM MECHANICS'.2Astronomers usually use the notation J instead of `.2



For CO the ` = 1 ! ` = 0 transition orresponds to the emission of a photon of frequeny of115GHz and a wavelength of 2:6mm.
6
?

Absorption�` = +1 h� = �E = E`+1 �E` = 2B(`+ 1)�Emission�` = �1 h� = �E = E` �E`�1 = 2B`� B = �h22I
Ground state

` Eigenvalue

` = 0` = 1` = 2` = 3`� 1`̀+ 2

Figure 2: The rotational energy levels of a diatomi moleule modelled as a rigidrotator. Allowed pure rotational transitions with �` = �1 are shown together withexpressions for the frequeny of the photon emitted in downward transitions orabsorbed in upward transitions.Figure 3 shows an example of the rotational spetrum of HCl in absorption, �` = +1, wherethe line frequenies orrespond to the absorption minima. The �rst line seen is the ` = 1 ! 2transition at �� = 4 �B = 42:36 m�1 orresponding to a wavelength of 236�m in the infrared;sueeding lines arise from ` = 2 ! 3; 3 ! 4; 4 ! 5; : : : transitions. The spaing of the linesis not exatly that of the rigid rotator model but dereases with `. This is due to the e�etof entrifugal fores, with larger angular momenta ausing the interatomi spaing to inrease:this inrease in a then inreases the moment of inertia, I, and hene dereases B.
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(2) ROTATION-VIBRATION SPECTRA.In the approximation that rotational and vibrational motion are independent we an writethe total energy of a diatomi moleule in the vibrational state n and rotational state ` as3En;` = Evib +Erot (13)= h�0(n+ 12) + �h22I `(`+ 1); n = 0; 1; 2 : : : ; ` = 0; 1; 2; : : : (14)For diatomi moleules Evib � 0:5 eV� Erot � 10�4 eV; hene vibrational transitions will bein the infrared, rotational ones in the mirowave to millimetre wavelength region. The key tounderstanding vibrational, rotational and ombined rotational-vibrational transitions leading tothe emission and absorption of photons is again the seletion rules. In addition to the angularmomentum seletion rules already mentioned for pure rotational transitions there are also rulesditated by the photon's parity and that of the energy eigenstates of the harmoni osillator.These require that the vibrational quantum number an hange by no more than one unit,�n = 0;�1, while, beause the photon arries one unit of angular momentum (photon spin1�h), we must always have �` = �1. Thus the full set of seletion rules for pure rotational androtational-vibrational transitions are:�` = �1 with �n = 0, or �n = �1Transitions with �n = 0 are pure rotational transitions, whih we have already disussed. Be-ause the photon arries unit angular momentum there annot be pure vibrational transitions:any transition leading to either single photon emission or absorption must be aompanied bya hange of angular momentum; but when �n 6= 0 this an be either an inrease or a derease�` = �1, whether the photon is emitted or absorbed: all that is required is that in emission themoleule's total energy derease, while in absorption the energy inrease. Figure 3 shows theallowed rotational-vibrational transitions in absorption for a diatomi moleule initially in thevibrational ground state n = 0. It is lear that the transitions break up into two distint sets:the R-branh, with �` = +1 and the P-branh with �` = �1.R-branh: �` = +1 �n = +1For n = 0! 1; `! `+ 1 �E = En=1;`+1 �En=0;`i.e. h� = h�0 + 2 �h22I! (`+ 1) (15)P-branh: �` = �1 �n = +1For n = 0! 1; `! `� 1 �E = En=1;`�1 �En=0;`i.e. h� = h�0 � 2 �h22I! ` (16)The pattern of allowed lines onsists of two sets entred about a frequeny �0, with the line at �0being absent beause it orresponds to the forbidden �` = 0 transition (` = 0! 0; 1! 1, et.).Figure 4 gives an example of the vibrational-rotational absorption spetrum of HCl showinglearly the entral missing line at �0 with the P-branh lines extending to lower frequenies andthe R-branh to higher frequenies.3A more frequently used notation is J instead of ` and v instead of n. I use `; n beause these are the symbolswe used in disussing orbital angular momentum and the SHO. Note also that �h!0 = h�0.5
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R(3)Figure 4: The rotation-vibration energy levels of a diatomi moleule modelled as in-dependent rigid rotator and harmoni osillator. Allowed vibrational-rotational ab-sorption transitions with �n = +1 are shown: the R-branh orresponds to �` = +1,the P-branh to �` = �1. The missing line at the entre of the spetrum ours atthe frequeny �0 orreponding to the forbidden �` = 0;�n = +1 transitions. Notethat the energy separation of the vibrational states, �h!0 = h�0, is not shown a-urately here: in pratie it is some 104 times greater than the separation of thelowest two rotational levels. 6
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APPENDIX: THE 2-BODY SCHR�ODINGER EQUATION.
������ Ir = r1 � r2mq
0

nm2PPPPPPPPPPPPPPPPPPr2i ~m1������ r1�R-
Figure: Coordinate system for 2-partiles.Consider the general problem of two partiles interating through a time-independent potentialdepending on their separation. The TDSE for the two-partile system is,bH	(r1; r2; t) = i�h�	(r1; r2; t)�t (17)where the two-partile Hamiltonian isbH = bp212m1 + bp222m2 + V (r1 � r2) (18)= � �h22m1r21 � �h22m2r22 + V (r1 � r2) (19)As usual for time-independent potentials we may separate out the time-dependene, obtaining:	(r1; r2; t) =  (r1; r2)e�iEtott=�h (20)where  (r1; r2) obeys the TISE with two-partile energy Etot,f� �h22m1r21 � �h22m2r22 + V (r1 � r2)g (r1; r2) = Etot  (r1; r2) (21)This ompliated looking equation an easily be simpli�ed using our physial intuition gainedfrom lassial mehanis. The two-partile system has two distint kinds of motion: the motionof the system `as a whole', by whih we mean the motion of the entre of mass (denoted m. inthe �gure); and the motion of the partiles relative to one another. The former orresponds tothe entre of mass vetor R hanging; the latter to the relative oordinate vetor r = r1 � r2hanging. The former should be free motion of a system with mass M = m1 +m2; the latterrelative motion in a potential V (r). To see how this happens in QM we transform the TISEfrom the oordinates (r1; r2) to new oordinates (R, r):4r = (x; y; z) = r1 � r2 (22)R = (X;Y;Z) = m1r1 +m2r2m1 +m2 (23)4The oordinates of the entre of mass are obtained by noting that the sum of the moments of the two separatemasses about the origin is m1r1 +m2r2 and should equal the moment of the total mass M = m1 +m2 ating atthe entre of mass, MR. This gives the equation for R.15



These are very simple linear transformations, with x = x(x1; x2) and X = X(x1; x2), so thatthere is no mixing of x; y and z oordinates, and partial di�erentiation enables us to transformthe di�erentials without diÆulty:��x1 = �X�x1 ��X + �x�x1 ��x = m1m1 +m2 ��X + ��x (24)��x2 = �X�x2 ��X + �x�x2 ��x = m2m1 +m2 ��X � ��x (25)Sine the oeÆients of the di�erentials on the right are just onstants the seond di�erentialsare easily obtained by `squaring',�2�x21 = m21(m1 +m2)2 �2�X2 + �2�x2 + 2 m1m1 +m2 �2�X�x (26)�2�x22 = m22(m1 +m2)2 �2�X2 + �2�x2 � 2 m2m1 +m2 �2�X�x (27)Exatly similar expressions an be found for the y and z omponents. These two expressionsare very similar exept for the interhange m1 $ m2 and the ruial sign di�erene in the rossterms, whih therefore anel:� �h22m1 �2�x21 � �h22m2 �2�x22 = � �h22(m1 +m2) �2�X2 � �h22 ( 1m1 + 1m2 ) �2�x2 (28)= � �h22M �2�X2 � �h22� �2�x2 (29)where M is the total mass and � is the redued mass of the two-partile system:1� = ( 1m1 + 1m2 ) ie. � = m1m2m1 +m2 (30)M = m1 +m2 (31)The same anellations our for the y and z omponents, leading to a TISE involving only thevariables R and r: f� �h22Mr2R � �h22�r2r + V (r)g = Etot  (32)whih is obviously separable by making the substitution (r1; r2) = �(R) (r) (33)Dividing, as usual by �(R) (r) and rearranging we �nd�h22M 1�(R)r2R�(R) +Etot = � �h22� 1 (r)r2r 1 (r) + V (r) (34)= E; a onstant, (35)where, sine eah side of the equation depends on a di�erent and independent variable, theymust equal some onstant, whose name is hosen as E sine it has the dimensions of energy.Writing Etot �E = Em we obtain the promised equations,� �h22Mr2R�(R) = Em�(R) (36)f� �h22�r2r + V (r)g (r) = E  (r) (37)16



The �rst equation is a TISE for a free `partile' of mass M and energy Em; the seond fora `partile' of mass � in a potential V (r) with an energy E. The whole two-partile system'senergy Etot is the sum of these energies,Etot = Em +E (38)The �rst equation obviously has the solution�(R) = e�iP:R=�h; where P is the momentum vetor, P2 = 2MEm (39)whih is a plane wave momentum eigenstate representing the free motion of the two-partilesystem as a whole.The seond equation is the one that onerns us here: for the the rotations of a diatomimoleule we would use as our �rst approximation the rigid rotator - a rigid weightless rod joiningthe two masses with the magnitude of the vetor r remaining �xed, r = a, and no interationbetween the partiles, V = 0; for the vibrations of a diatomi moleule we would approximatewith a one-dimensional SHO potential, V (x) = �!20x2=2. In both ases the mass used would bethe redued mass �. In a �rst approximation we will assume these two relative motions, rotationand vibration, are independent.
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