QUANTUM MECHANICS B PHY-413 Note Set No. 7

ANGULAR MOMENTUM IN QUANTUM MECHANICS. '
1. ORBITAL ANGULAR MOMENTUM L & ITS COMMUTATORS.

For a classical particle with linear momentum p and position vector r, the Orbital Angular Momen-
tum is:

Lg=rxp. (1)

To find the quantum mechanical orbital angular momentum we follow the rules for quantising a classical
problem: replace all classical dynamical variables by the appropriate operator,

(0 9 9
—=p = —ihV=—ih|—,—, = 2
P—P L L (ax’ay’az> )
and r—=T = r =(x,)2), 3)

giving the QM Orbital Angular Momentum Operator:
Lorxp = —ikrxV, @)

or, in cartesian components,2

- (2 2
L. = yp-—zpy=—i (y§—25>, (5)
- (a3 2
L, = zpx—xp:= —i (Za _x§> ) (6)
- e
L = XPy—ypx——lh<x5—y$>- (7)

First we note that , as befits an observable dynamical variable, L is a Hermitian operator because both r
and p are Hermitian,
LI =1, i=1,23 (8)

Next we study the commutation relations between the three components of the angular momentum oper-
ator using the canonical commutation relations. These state that coordinates commute with alien compo-
nents of the momentum operator, but do not commute with their own, [, p;] = ik §;;, and that coordinates
commute with coordinates and momenta with momenta, [x,x;] =0, [p;, p;| = 0:

IThis topic is quite long and complicated. I recommend that you first look at the summary section at the end, p.21, and
then work through the material several times, looking through the summary at regular intervals. Your primary aim should be
to understand the results given in the summary. The detailed derivations and discussion are to create that understanding by
showing where the results come from. There are, of course, several techniques and concepts of considerable importance in the
derivations, so they should not be skipped.

2I remember the cross-product by drawing a circle in my mind with the components x, y, z arranged clockwise. The compo-
nents of the cross-product, reading from left to right in the equation, always occur in cyclic order (ie. clockwise order) for the
first (positive sign) term and anti-cyclic for the second (negative sign) term. Thus, for the z-component L, you start the cyclic
sequence with z, giving z — x — y, giving L, = xpy...; the anti-cyclic one is z — y — x, giving L, = xpy, — ypy. This is just
another way of expressing the rule based on the determinant, but it’s easier to keep in your head without the need to write down
any intermediate steps.
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— AL, 9)

oLy = AL, (10)
[ Z Lx] == IﬁLy’ (11)
[Ly,L;] = ihLy. (12)

Notice that the commutators give +ih when, reading from left to right, the components arein cyclic order
just asin across product. Indeed, these commutators can be written in an even more succinct form as a
cross product:

LxL =inL. (13)

Thisform of the commutators shows how unintuitive non-commuting operators can be: the cross product
of two parallel ordinary vectors vanishes, but not when they are operators and their components don’t
commute!

The physical consequences of thisfailure to commute are remarkable and follow from the generalised
Heisenberg uncertainty relation

# 0 if [ABJ#0. (14)

Hence only one component, conventionally taken to beL.,, can be measured with perfect precision (AL, =
0). Once this measurement has been performed, we can learn nothing whatever about the other two
components (ALy # 0 and AL, # 0) because the operator L, commutes with neither Ly nor Ly. Formally
we can say that an eigenstate of L, cannot also be an eigenstate of either Ly or L.

However, there is a further twist to the story: the square of the angular momentum, L2 commutes
with L,. Hence the length of the angular momentum vector can also be measured with perfect precision
along with its z-component. To prove this we consider separately each termin L2, which is defined as

L2=12+02+L2 (15)
First,3
[E>2<a i-\Z] = Ex [EX7 i—\z] + [EX7 i—\z]i—\x

3Using the identity obtained by adding and subtracting ABA from
A28 - A%B-BA2
— AAB—ABA{ABA-BAA
— ARB-BA)+(AB- BA)A

~ o~

— AAB+[ABA



Similarly,
L] = LML, LI+ LG
= HiR(LyLx+LyLy), using [Ly,L,) =iAly (17)
while, finally and obviously, EZ commutes with its own sguare,
[.L]=0 (18)
Adding egs. (16), (17), and (18), shows that L2 indeed commutes with L,
C2L) =L+ L+ L=0 (19)
Similar calculations for the other components give the same result, which we can summarise as.
[L2L]=0, foral i=1,23 (20)

Since we have chosen to measureL, exactly, the relevant commutator is [EZ,EZ] =0 (i = 3), which shows
that we can also measure L2 exactly: it is possible to measure exactly both the length and one compo-
nent of the angular momentum vector, but at the price of knowing nothing whatever about the other two
components. This can beillustrated with Figure 1, which shows avector of known length and projection
onto the z-axis, but which can have any position on the circle obtained by rotating the vector around the
z-axis. In formal terms our result tells us that eigenfunctions of L, are also eigenfunctions of L2, but not

of Ly nor of L. Of course the choice of L, rather than Ly or Ly isan arbitrary convention; the point isthat
only one may be chosen from the three components because the corresponding operators do not commute.

z

X

Figure 1: Picturing what can be measured exactly. This quasi-classical picture is not to be taken too
literally - for an eigenstate (L,) and (L?) are the eigenvalues of the corresponding operators. L is a
quasi-classical vector representing the quantum mechanical angular momentum.



2. REPRESENTING L IN SPHERICAL POLARS.4

In many physical applications, such as the quantum mechanics of the hydrogen atom, we either have
exact or approximate spherical symmetry. This, together with angular momentum’s association with
rotation, demands that we consider writing down the angular momentum operators in spherical polar
coordinates; this also leads to agreat simplification and a recognition that the orbital angular momentum
operators only involve the angular variables 6 and ¢.

In cartesian coordinates the orthogonal x—,y—, and z—axes, are fixed and lie along the orthogonal
unit vectors g, = i,6, = j, and €, = k; but in spherical polar coordinates the unit vectors, g,eg, and
€&y, although orthogonal, vary in direction with the direction of the position vector r as may be seen
by inspecting Figure 2. Any vector may be written as an expansion in terms of these so—called basis
vectors:

— e VitesVeteV 22)

special cases being the position vector,

r = ix+jy+kz (23)
= gfr (24)
and the gradient operator,
.0 .0 0
0 10 1 0

= & t+e-—-+6 (26)

or roe  ’rsinf oo
Of course you could just look up this last expression in a maths text book, but the following argu-
ment shows that it is almost obvious: The gradient involves differentials with respect to the 3 orthog-
ona infinitessimal distances: dx,dy,dz for cartesian coordinates and, as inspection of Figure 3 shows,
dr,rd0,rsin6d¢ for spherical polars.
In spherical polars the momentum operator is therefore

p = —ihO (27)
= e Pr+esPo+ ey, (28)
: 0 10 1 o0
- "”(efweem*%m%)’ @)
enabling usto identify the polar components of the momentum operator:
- 0 10 — 1 0
pr — —|ﬁa, pe — _IHF%’ pq) — —|ﬁm % (30)

To find an expression for the orbital angular momentum operator we need the cross product of the vector
r = reg with the momentum operator. This brings in the cross products of the unit vector e with all three

4You may find this section somewhat intimidating at a first reading. First read through the summary Sections 5 at the end of
this chapter then work through the material several times, referring to the summary at the end of each reading. If you still feel
it's beyond you then just skim the material and take the results on trust. Aslong as you understand the meaning of the results
in the summary you should be able to follow the subsequent developments.



orthogonal unit vectors. These can be found by inspecting Figure 2 and using the right—hand rule for the
cross—product:

exeg= 0, (31)
€& X €= e¢a (32)
& X € = —6, (33)

making it easy to obtain the angular momentum operator in spherical polar coordinates,
L = rxp
= (rer) x (& Pr + € Po+ € Pp)
= (e Po—eoPp)
0 1 0
= —ih =
' (e"’ 9 ®sne a¢>’ (34

Where we have used our previous results for the cross products and the momentum operators. This
expression immediately shows the important property alluded to above: the orbital angular momen-
tum operator only acts on the angular variables. Thus for a potential not depending on direction,

ie. acentral potential with V(r) =V (r,6,¢) = V(r), the angular momentum commutes with the
potential:

For acentral potential: [L,V(r)]=0 (35)

which meansthat each component and any power of the angular momentum commutes with the potential;
For acentral potential: L,v(r)] = 0 i=123 (36)

and L2v(r)] = o (37)

We conclude this section by giving expressions for the orbital angular momentum operatorsfx,fy,fz
and L2 in spherical polars. For this we need to find the projections of the unit vectors ¢, ey and g, onto
the x—,y—, and z—axes. The details are given in Appendix A and Figure 4.

& = isinBcosd+jsinBsing + k cosd (38)
e = 1icosBcosd+jcosBsing —ksind. (39
& = —ising+]cosd. (40)

Having established the projections of vectors g, eg and g onto the x—,y—, z—axes we can simply rewrite
the angular momentum vector in eg. (34), using the above equations, as:

-~ . 0 1 0
. ., 0 cos6 0 «cosB . 0 sin@ 0
= —|h_{| <—sm¢% Sno os¢a¢> (coscb%——sine sn¢%>+km£},
= —ih_{—i (smq) + cotOcos¢ ¢>+j (cosq) —cotfsing ¢>+k%}, (41
Hence we identify the three cartesian components of angular momentum:
Ly = |ﬁ(sn¢ +cot6cos¢a¢> (42)
L, = —ih_(coscb cotesn¢a¢> (43)
L, = -in2 (44)
z - aq)



Note particularly the very simple form taken by L, - thisis a consequence of the fact that L, is the
component of rotation about the z—axis, ie. in aplane parallel to the x—y plane; this clearly corresponds
to only the azimuthal angle ¢ varying. We can obtain the operator as follows by referring to Figure 3:

~

L, = (lever arm projected onto x —y plane) (p projected onto x — y plane)
= (rsin6)(py)
1 9

= (rsme)(_ih_rsine%)

0
—|h_%

There is no particularly easy way to obtain L2, because & and €& both depend on 6 and ¢; this contrasts
with the constant unit vectorsi, j, and k. But the answer derived in Appendix C is quite simple:

~ 1 0 0 1 @
2 _ 2) _+ Y (snp? il
L= _h_{sine %8 (S'”eae>+sin29 a¢2}‘ (49)
Thisis aremarkable result: apart from the factor —f¢, and amissing 1/r?, thisisjust the angular part of
the del—squared operator in spherical polars,

10 0 11 0 0 1 92
2 _ 10/50) 1f 1 0/ . 0}, 1 0
0 = 55 (r ar> + 5 {sineae <S|neae> + 578 64)2}' (46)

_ a_2+gg _*_i ii smei +ia_2 (47)
\or2 " ror r2 | sinB a8 09/  sn?0 092"

Recalling the kinetic energy part of the Hamiltonian

_ P2
R?
= o 9

we immediately see that this can be written in terms of the squared angular momentum as

2 2 2
h‘(@ 26> L (50)

KE=—— [ —+4+—— _—
2m 6r2+r6r 2mr?

In the following section we explain how we might have guessed this simple result from a knowledge of
the classical kinetic energy.



3. CLASSICAL & QUANTUM KINETIC ENERGIES.

To appreciate the important result for the kinetic energy obtained in the previous section let us first
consider the classical case. Resolve the total momentum vector along and perpendicular to r®

P=pr+pL (51)
Since these are orthogonal and, of course, commuting classical vectors,
Pr-pL=pL-pr=0. (52)

Looking at Figure 5 we see that the lever arm of p, about the origin isr so that the magnitude of the
orbital angular momentum is

L2
Ly =rp,, andtherefore, p? = r—g', (53)
Hence we easily obtain the classical Kinetic energy as the sum of linear and rotational energies:
2 2 2 2
(KE)g = £ = PrtP)_ B Lo (54)

2m 2m  2m  2mr?

where we used p? = p;.p, = p?. To obtain the QM form one might be tempted to simply replace g and
Ly by the quantum mechanical operators. This would be wrong: the quantum mechanical calculation is
altogether more tricky because the two momentum operators don’t commute,

BePL#DLPr, with PrpL=0 but P..pr— —2ih‘% £0. (55)

This shows itself through the fact that although all the unit vectors are independent of r, they al vary
with the angles 8 and ¢. ® In Appendix B we show how to calculate this additional termp , .p;. Recalling
the expression for the r-component of the momentum operator,

pr = —iﬁ% and hence, ¥ = —h_zg—rzz (56)
the full Quantum M echanical KE operator becomes:
e - P (57)
= % - ih‘% + %ﬁz (58)
2 2 2
2 2
- _zh__mrég (r%) " 2r|;1r2 (60)

This expression shows a close resemblance to the classical expression for the KE, eg. (54): the additional
term, —ihp, /nr, is clearly of quantum origin because it has an explicit factor of h even before we use a
particular representation for the operator. It arises from the non-commuting operators and corresponds to
the ‘extra term (2/r)d/or which we failed to discover by unthinkingly translating the classical formula

SWhere the momentum vector alongr is pr =& pr, and the one perpendicular tor is p; = e Pg+€p Py
6See Appendix A for afull discussion



into operator form. This expression will be important in our study of the hydrogen atom. For the present
we note that the Hamiltonian now takes the form,
- R [ 29 L2 :
H =~ (W—f—F%) +W+V(r) for a central potential. (61)
This form for the Hamiltonian in any central potential immediately demonstrates that it commutes
with all the angular momentum operatorsL; and L2. ThisisbecauseL; and L2, (a) only act on the anguLar
variables 6, ¢, and therefore do not effect any r—dependent terms, and (b) commute with the operatorl_2

and hence they commute with L2 /2mr? and other r-dependent termsin the Hamiltonian. Hence we find
the important results,

[H,G]=0 i=1,2,3 (62)
| For aCentral Potential |
H,L=0 (63)

which imply that eigenstates of energy are also eigenstates of L, and L2. Recal that once we have
Ehosen to make our energy eigenstatesAalso eigenfunctions of L, they cannot be eigenfunctions of Ly and
Ly because these don’t commute withL,.

4. QUANTISING ORBITAL ANGULAR MOMENTUM.
We are now in a position to prove that the eigenvalues of L2and L, are guantised. Sincein acentra

potential, eigenstates of these two operators are also eigenstates of energy, we therefore see that an
electron in a state of definite energy will also be in an eigenstate of L2 and L:

It Hye(r) = Ewe(n), (64)
then L2We(r) = R24(L+1)Pe(r) £=0,12,..., (65)
and LWe(r) = AmPe(r) m=—¢,—¢+1,...,0,....0—1,/. (66)

(Wewill show later that there is also the possibility of /—values1/2,3/2,5/2,... for angular momentum
in general, including spin, but not for orbital angular momentum.) From the above summary we see that
the electron wave function should not only carry the energy label E ( or equivalently the quantum number
n, asin the infinite square well, harmonic oscillator or the hydrogen atom), but also those corresponding
to the angular momentum, We ¢ m, OF Yn ¢ m.

There are two approaches to demonstrating the quantisation of angular momentum:
APPROACH (1), by seeking directly the eigenfunctions of L2 and L,. | will motivate this approach
physicaly by showing how the eigenvalue eguations arise in seeking the energy eigenfunctions for a
particlein a central potential. We will apply this later to our study of the hydrogen atom.
APPROACH (2), by treating the angular momentum operators as abstract entities defined entirely by
their commutation relations. It is this approach which reveals the possibility of non-integer quantum
numbers £ and mand which enables us to handle the purely quantum mechanica phenomenon of spin.



4.1 APPROACH (1): THE EIGENFUNCTIONS& EIGENVALUESOF
ORBITAL ANGULAR MOMENTUM OPERATORS.

We could start our discussion by seeking directly the eigenfunctions ofL2 and L,. Looking back at
the representations of these two operators in spherical polars, egs. (44) & (45), we notice thatL, only
operates on the variable ¢, eg. (44), so that its eigenfunctions are functions of ¢,

LOn(9) = nmidnm(9), (67)
e —iﬁaq)a”;)(q)) = nhdy(9), (68)

The solution to this equation is simple and unique:
Or(9) = €™, (69)

but there is nothing yet to tell us the value of m, the azimuthal quantum number; for this we need to
introduce some further physical information.

In contrast, the operator L2 €g. (45), operates on both 8 and ¢, so that its eigenfunctions depend on both
variables; we will also find that the eigenfunctions depend on m as well asthe L? eigenvalue

L2Yim(8,6) =R*£(£+1)Yim(6,0) (70)

Again, at this stage, there is nothing to tell us the value of the quantum number 2.
To introduce the physics we consider a particle in a central potential V (r) and we proceed to solve
the TDSE in the obviously appropriate spherical coordinate system:

H\(raeaq)) l'IJE(ra eaq)) =E qJE(ra eaq))a (71)

which we can write more explicitly as,

2m

R [ 20 L2
{—— (ﬁ+FE>+W+V(r)} We(r,0,0),= EYe(r,0,0) (72)
orinitsfull glory,
R (0> 20 P [ 1 0/, .0 1 0
{‘% (ﬁ*?&) ~ mr2 [m% (S'“%> * 38 W] *V(”} Ve=Ete (3
Separation of variables: To solve this equation we first notice that the angular dependent terms are

very nearly separated from the r —dependent ones; all we have to do is multiply by P to achieve the full
separation. This suggests that away to find the solutions is to try to find one in the form

[ WE(1,6,0) =R()Y(6,0) | (74)
Substituting into the TISE and multiplying by 2mr?/R(r)Y (8, $) we obtain
r d?R(r) = 2dR(r) _ 1 -
W{h_z( iz Tt ar >} + (E—V(r))2mr2_—Y(e’q))LZY(e,q))
i 1 9 (. .0Y(8,0) 1 0%Y(8,9)
= Y(6.0) {ﬁ%(‘q”e 3 >+sin29 362 }

This equation must hold for all values of the three independent variables r, 0 and ¢; but the the left side
isonly afunction of r, the right only afunction of 8 and ¢. They can only possibly be equal for arbitrary

9



choices of r,8 and ¢ if they don’t vary at al, ie. they are constant. We call this constant, which has the
dimensions of F?
R20(0+1)

for convenience, where 7 is an unknown dimensionless constant’ Thus we obtain the radial equation
whose solution depends on the precise form of the potential,

h? (dZR(r) N 2dR(r)> N (V(r) +h‘2£(e+ 1)

2m\ dr2 T r dr 2mr2

> R(r) =ER(r), (75)

and the angular equation which is independent of the potential:

~ 1 0 0 1 0
L2Y =P |— —(snb= |+ —==—5|Y =R? 1Y . 7
0.0) = | 55 75 (30035 ) + S2g 2| YOO —FUC+DYV@D). (7O
Something remarkable has happened: the differential operator which operates on the function Y (8, ¢) is
none other than our recent acquaintance, L2, and this equation is nothing but the statement that Y(6,9)
isan eigenfunction of the angular momentum operator L2, with the corresponding eigenvalue being
the constant PP¢(¢ + 1):

L2Y(6,0) =hP¢(£+1)Y(6,9) (77)

Remember that at this point we know nothing about the numerical value of ¢. Incidentally, it's not
too surprising that this equation occurs in this problem: for a central potential L2 commutes with the
Hamiltonian, and therefore eigenstates of energy - in this case U = R(r)Y(6,¢) - are also eigenstates
of L2. We now antici pate that the wave function is also an eigenstate of L, because this operator also
commutes with H. To see that thisis so we now separate the eigenvalue equation for Y(0,¢) by trying a
solution of the form:

Y(8,0) = ©(8) 9(9). | (78)

Substituting into the equation, multiplying by sirf8/0® and isolating the ¢ —dependent terms on the
right we obtain the separated form,

1 . d /.
W&neﬁ(sne

do(e)

1 d?d(¢)
doe '

+0(l+1)SP0=———
) ey 6) a?
Once again we see that this equation must hold for all values of the independent variables 6 and ¢, so
that the left and right sides must be a constant. Calling this as yet unknown dimensionless constant i,
we obtain for the 6 equation:

1 d /. .do@®) P _
= (S‘”E’W) + [£(£+1) — sze] 9(8) =0. (80)

(79)

This is the associated L egendre equation whose finite solutions, known as the associated L egendre
functions, are well-studied and are labelled by the values of the two constants £ and m:

9©(0) = P;"(cos8). (81)
The ¢ equation isvery simple:
d*o(9) _
a2~ o). (82)
The solutions are of the general form '
®(9) =™, (83)

At this stage we have no idea whatever what the value of ¢ is and we are just anticipating the form that will come out of
subsequent discussion. The discussion would go exactly the same way if we called this constant A, a, 3 or anything else.

10



which is also a solution of the eigenvalue eguation,

L, ®(¢) =Amd(¢). (84)

Indeed, if we act on this last equation withL, we simply obtain —7 times eg. (82):

2

R @)
thereby confirming that hm is the eigenvalue of L, and that ®n(¢) its eigenfunction. Thus we have ex-
plicitly verified that eigenfunctions of the Hamiltonian for a central potentia are also eigenfunctions of
L2 and L.

Applying Physical conditions to the wave function: We now impose the physically reasonable re-
striction that the wave function be single-valued; thisis certainly consistent with the probability inter-
pretation of the wave function® Since ¢ and ¢ + 21t correspond to the same physical point, we require

P(¢ +2m) = P(9), (86)
which immediately shows that m must be an integer:
m=0,+1,+2,+3,... (87)

Thus do we obtain the quantisation of the z—component of orbital angular momentum: L, has guan-
tised eigenvalueshmm=0,+1,+2,+3,....
We now return to the 8—equation which can be simplified by using the variable w = cos8?

(1—w’-’)d—2—2wi+e(1z+1)— m P (w)=0 (88)
dw? dw 1—w2| ¢ N

This can be solved by the series method: as with the harmonic oscillator, it turns out that a physically
acceptable wave function, finite at cos® = +1, only results if the series terminates after a finite number
of terms. Thisimposes arelationship between ¢ and m:

¢ = 0,1,2,... and for each ¢, mhas (2¢+ 1) alowed values,
m = —4—0+1,...,0,...,0—1,/. (89)

The angular momentum vector, in units of h, is a vector of length \/£(¢+ 1); the only permissible
orientations of the vector being those for which its projection onto the z—axis have the values m =
—4,—¢+1... 0. Thusfor £ =1 there are 3 allowed m—values, m= —1,0,1; for / = 2 there are 5 a-
lowed values, m= —2,—1,0,1,2. Figure 6 illustrates these rules and emphasises the fact thatLy and Ly
are indeterminate by showing the angular momentum vector as having any orientation corresponding to
rotations about the z—axis°

4.1.1 ORTHONORMALITY OF ANGULAR MOMENTUM EIGENSTATES:

8This argument for single-valuedness of s is not generally valid, but is correct for orhital angular momentum. In fact, since
the physical quantity is the probability density |Ww[2 O |®(¢)|%, we only require it to be single-valued. This only makes m real.
The operator approach will show that 2¢ + 1 =integer, which implies that m= 1/2 is also possible - a value appropriate for
electron spin. So the the spin wave functions for the electron are double-valued!

9That the solution of this equation is independent of the sign of mis obvious because the equation contains m only in the
form m?. Thus P =P, ™ = P}m‘

10Note also the rather peculiar characteristic of the rules which never have the vector pointing precisely along the z—axis!

Thisis because the vector has length /£(¢+ 1) rather than the value ¢ obtained from Bohr’s original theory.

11



We have now shown that the wave function depends on the energy and on the quantum numbers £, m;
in fact if we look at the equations satisfied by R(r) and Y (6, ¢) we see that the former depends only on
E and ¢, R(r) = Re,(r), while the latter does not involve E at al, but does depend on both ¢ and m,
Y(6,9) =Yim(0,9). Thus we should write the energy eigenstates not as Uk (r) but as:

| Wesm(r) =Ree(r) Yem(©,6). | (90)

To be aphysically acceptable wave function Yk ;m(r) must also be normalised:

[ |Weem(r)?d®x=1,| wherethe 3-D volume element, Figure 7,is  d®>x=r2sin8dédddr, (91)

or, in full detail (note especialy the factor of r?),

0 21 T
2 : 2
/O ‘ dr/o d¢/0 SNBd8|Weym(r)2 = 1. 92)

A convenient shorthand for the angular integration variable is the solid angle notation, dQ = sin6d6dé¢,
with the accompanying shorthand for the integration itself:

/ 40 = /O " o /O "sin0de @3)

It is conventional and convenient to normalise the spherical har monics,

Yim(8.9) = NemP}™ (cos®) €™, (94)

/ Yym(6,0)[2dQ = 1, (95)

which means that, to normalise the wave function Yem(r) the radial wave function Rey(r) is normalised
only when multiplied by r?: 12
/ IRee(r)[2r2dr = 1. (96)
0

As expected for eigenfunctions of Hermitian operators, the spherical harmonics are orthonormal:

[ i (8.6)Yin(8,6) 40 = 81 8rim (97)

Moreover the most general solution to the TISE equation isalinear combination of spherical harmonics:
they constitute a complete set of functions for which the expansion thAeorem Dolds. Thusthe angular part
of any wave function may be expanded in terms of eigenfunctions of L? and L;:

[ee]

+¢
w(raeaq)):[z z Cf,quE[(r)Yfm(eaq))? (98)
=0

m=—/

1 The normalising factor, with a conventional but arbitrary phase factor (—1)™, is

—— {(2e+1)(zm)!r/2
im = ( 470+ m)!
12Thisisimportant for the physical interpretation of plots of the radial wave function: one normally plots |r Re,(r)|? because
this represents the physical probability density at a distance r from the origin. Of course we must remember that this is
then modulated by the direction-dependent angular wave function [Y;m(6, ) \2 factor to give the full spatial dependence of the
probability density.

12



wherethe coefficients ¢, m play the samerole asthe ¢, in our general discussion of the expansion theorem.
Normalisation of this state requires,

o 44
Y leml®=1, (99)
=0m=—/(

which tells us that the |c;m|? are probabilities. Thus, for a system in the normalised state Y(8,¢) a
measurement of both the square and z—component of orbital angular momentum yields, with probability
|crm% one of the eigenvalues P/(¢ + 1) of L2 and one of the eigenvalues, Amm =y = —¢,—/ +
1,...,—-1/¢, of L, corresponding to that /—value; immediately after the measurement which gave the
values (¢,m) the wave function will be Y;m(6,¢). If only the squared angular momentum is measured,
yielding ?¢(¢ + 1), then the probability for this outcome is the sum over the possible, but unmeasured
my—values, 3¢, |com|?.

If we are concerned with a state of definite total orbital angular momentum, then it must be an
eigenstate of L2, fixing the value of the quantum number /. Thisis afrequently used specia case of the
more general expansion theorem in eq. (98). The angular part of the wave function would then be:

+0 +¢
Yo (8,0)= Y cmYim(8,0), where Y [em|*=1, (100)

m=—/{ m=—/{

For asystem in this normalised state the outcome of a measurement of L2 will certainly yieldR?4(¢ + 1);

but a measurement of L, will yield one of its eigenvalues, hmm=nm = —¢,—¢+1,...,/— 1/, with

probability |cm|?; if the outcome ishm then immediately after the measurement the wave function will be
Y(m(eaq))'

13



4.1.2PLOTTING THE SPHERICAL HARMONICS- THE SHAPES OF ATOMS.

Before we deal with the operator approach to angular momentum, let us briefly examine the prop-
erties of the spherical harmonics with a view to its application in understanding the shapes of atoms.
Since the relevant angular part of the quantum mechanical probability density (per unit solid angle,
dQ = sinBdbd¢) isindependent of the azimutha angle ¢,

Yin(8,0)[> = NZ,[PI™2jem 2
2
— N2, [Pl!m'] : (101)

we see that al systems with a central potential have rotational symmetry about the z—axis. Put another
way, aplot of theangular probability distribution can always be pictured as a 2-dimensional figure rotated
about the z—axis, examples of the first few are shown in Figures 8a and 8b. The first three angular
momentum eigenfunctions are also tabulated in Table 1; notice that the states have definite parity which,
being (—1)¢, alternates in a nearly familiar manner!3 Of course this is another example of our theorem
that eigenstates of energy are also eigenstates of parity if the potential is symmetric, V(—r) =V(r). This
istrivially satisfied for a central potential because under a mirror reflection the length r of the vector r
doesn’t change.

Figure9: Illustrating the parity transformation in spherical polar coodinates.

13)n fact the mirror reflection of axes, (x,y,2) — (—x,—y,—2) only alters the angles in spherical polars. From Figure 9 we
see that in the reflected coordinate system ( aleft-handed system) the components of r change:

(r,6,¢) — (r,m—06,0+m giving snB—sinB, cosd— —cosb,

leading to,
P" (cos8) — (—1)*"IMPI™ (cos6)
and also, b _y GTmb (gl gm_
Combining these then gives the result quoted: Y, — (—1)‘ng.
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Tablel. Angular Momentum Eigenfunctions, ‘lIJEgm(r) — REg(r)ng(e,(p).‘

Quantum Associated Legendre  Azimuthal
Numbers Function Function | Spherical Harmonic
Parity = (—1)"
/ m P}m‘ (cosB) gmo Yim(0,9) = Nym Pt!m|e‘m¢
1
0 0 1 1 Yoo = ()2
1
1 0 cosf 1 Yi0= ()2 cosb
. 1 .
+1 sin® gti¢ Ylilzx(%[)zsineei'q’
1
2 0 $(3cos?6-1) 1 Ya0 = (13) % (3cos?6 — 1)
. 1 .
+1 3sinBcosh gtit Ya11=F (£)2sinBcosbet'?
. 1 .
+2 3sin’H et2¢ Yo 12 = (z5%)2sin°Bet?
1
3 0 $(5cos®0—3cosB) 1 Ya0 = (1) % (5c05°0 — 3cos6)
. 1 .
+1 3sinB(5cos?H—1) et Ya11=F (&) 2sinB(5cos*0 — 1) e
. 1 .
+2 15sin?06cosh et2i¢ Ya12 = (322) 2 sin?BcosOet2?
. 1 .
+3 15sin°6@ e3¢ Yai3=F (&) 2sn’petSie

Notes: (a) The mysterious F in the last column are conventional phase factors - see footnoté!.
(b) The associated Legendre functions are indeed functions of cos6 since sin6 =/(1 — cos?6).
(c) The normalised components of the wave function for a given / are:

+1
Oym(C0S8) = /21Ny PI™ (cos) . Otn (W) @1 (W) W = B,

where w = cosB0 isthe integration variable, the range of integration being 8 = 0 — T,

2n

(Dm((])) = \/%.[elmq) 0 (D*m (q>)d>m(¢)d¢ = Onim,

and

Yom(8,0) = Om(6) Prn(0). | / Y (8,0) Yim(6, 6) dQ = S
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4.2 APPROACH (2): GENERAL ANGULAR MOMENTUM OPERATORS.

One of the great surprises in the history of 20th century physics was the discovery of spin, aform of
angular momentum intrinsic to an isolated particle such as an electron. The surprise is that spin cannot
be understood quantitatively as the analogue of a spinning top or the earth spinning on its axis - these
are really examples of orbital angular momentum in disguise: the material making up atop or the earth
is simply orbiting about the spin axis. In fact the electron is known experimentally to be so small that
it’simpossible to imagine how it could produce its angular momentumh/2 by spinning no faster than the
speed of light. Thisis our motivation for studyl ng angular momentum in apurely abstract way, assuming
that the general angular momentum operatorJ represents all forms of angular momentum: orbital, when
J=L; spin, when J =S; and situations which occur when spinning particles are also orb|t| ng - such as
an electron in an atom - for which the total angular momentum is the vector sumJ =L +S. Without
any prior knowledge about the spatial structure of spin, our approach will be purely algebraic. angular
momentum in QM isrepresented by the Her mitian vector operator J which obeysthe commutation
relations:

[‘j; j)\’] IﬁJZv
JIxJ=ihJ { 3, % = ihd,, (102)
13,3 = ihdy.

From these equations we can deduce that J2 commutes with all the components of J. The proof follows
exactly the sequence egs. (15) to (20) which used only the commutation relations and not the explicit
representation of orbital angular momentum:

FP=2+32+32 (103)

A~

For each term we use the identity [A2, B] = A[A, B] + [A, B]A to obtain:

[2,3] = K]+ 5Lk
= _imeJy+Jny)- (104)
Smilaly,  [,3] = +if(gJ+3J), (105)

while, finally and obviously, J, commutes with its own square, [32,J,] = 0. Thus the two non-vanising
terms cancel, showing that J2 indeed commutes with J,. Similar proofs go through for the other two
components, giving finally:

[2,3]=0, foral i=123 (106)

Since 32 and J, commute they have a common eigenfunction , with as yet unknown eigenvalues fA
andhA; respectively:
J2P =Ry (107)
T =M,y (108)
We now proceed to show that the commutation relations alone imply the quantisation rules obtained

before for orbital angular momentum, but with abonus: half-integral angular momentum isalso possible.
The analysisis divided into severa distinct steps:
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Step 1: A < VA

Since the square of an operator has a positive expectation value we obtain,
@) =R+ )+ > (3B), (109)
which translates immediately into a statement about the eigenval ues
A2 <\ or, taking the square root of these positive numbers, |A] < VA. (110)

Notice that A, can have any sign, but A is positive because it's the eigenvalue of the square of an operator.
This result is not surprising when we refer to the quasi-classical Figure 10, since the projection of the
angular momentum vector onto the z—axis can never be larger than the length of the vector®

2y =Ry
] Azl < VA
EzllJ :ﬁ)\ZlIJ

X

Figure 10: Picturing the inequality, |A;] < V/A for an eigenstate of J, and J2 with eigenvaluesh,
andh2\.

14Remember that the eigenvalue p of an operator ¢ is just the expectation value of that operator when the system isin the
corresponding eigenstate:

()

/lp*@tpdx: u/ Y wdx for an eigenstate, OW = P,
p  for anormalised eigenstate.

15Deeper thought reveals that the result is more subtle: the quasi-classical picture does no more than depict the content of
the eigenvalue equations. That the eigenvalues do indeed behave this way is true but not trivial to prove. In the case of spin
one has to prove that the expectation value of a squared operator is positive without knowing anything about the nature of the
‘coordinates’ upon which the wave function depends - indeed such coordinates may not even exist for intrinsic properties like
spin. However if the wave functions are dependent on the spatial variables, as in the case of orbital angular momentum, then
it's clear why the square of a Hermitian operator has positive expectation value:

(@ = /qJ*(Szlpdx:/(ﬁqJ)*@qux since O is Hermitian

/\(Slp\zdx > 0, sinceit'stheintegral of apositive quantity.
The matrix or Dirac formalism is needed to prove this result when, as for spin angular momentum, we do not know what isthe

analogue of the coordinates x,y,z or r,8,¢. That is the great merit of Heisenberg's matrix form of QM and why we will use it
later for dealing with spin.
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Step 2: Introducing raising & lowering operators, | J;..

Aswe discovered in solving the SHO, the introduction of raising and lowering operator sisthe key
to the analysis. They are simple linear combinations of J, and Jy:

J=g+iy with J=J. (111)

Their properties all follow from those of theJ—operators:16

I = FP-F+Ry (112)
3 Jy J?-32-Rj, (113)
or, moresuccinctly, JiJ; = J2—J2+Rj, (114)
leading to: o R
[Jia‘]¥] = iﬂb (115)
and A R
[Jz, 4] = £hd,.. (116)
Finally, and most simply, they commute with J2 because J; and J, do:
[32.3:]=0. (117)
This has the immediate consequence that,
Step 3: | JLy are eigenstates of J2 with the same eigenvalue as .
To prove this we merely act on  withJ2 and J.. in each order:
L@y = Py
= RPA(JLY); using ontheleft that P is an eigenstate of J2, (118)

thereby showing that (J;lp) is also an eigenfunction of J2 with the same eigenvaluefPA as .

Step 4: | J.y are eigenstates of J, with eigenvaluesh{A, + 1).

The proof shows why J, arecaled raisi ng and lowering operators. We use their commutators with
J, inthe form,
JJy =33, +hdy, (119)

to find

L(3iY) = I (L) +RIp from the above commutator,
= P\ (3iy) +hJiy since Ly =M.y (120)

16Thus, for example,

N

(i3 (I —idy)
= B+E-i3-3%

~

Recognising the first two terms as J2 — J2 and the bracketed combination as the commutator [Ix, j;/] = iRJ; we obtain the result
quoted. The other results al follow in asimilar manner.
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Collecting the (J..) terms on the right together gives the result:

B(3ew) =N, +1) (Jow) (121)
J, Eigenvalue Eigenfunction J2 Eigenvalue
Ji Wmax =0 AT Wrnax h2A
A\, +2) (35)2y R2A)
" A(A,+1) I A2
J,
hA, U] h2A
5 )
Y h_()\z — ]_) Jy A2\
AAz—2) (30)2y RZA
ﬁ)\g‘n l.IJmn ﬁ2)\
j;'JJmin =0

Figure 11: Illustrating the action of the raising and lowering operators on the eigenstates of 3,
and J2. All are eigenstates of J2 with eigenvalueR?\.

Figure 11 depicts the action of these ladder operators. a single application ofir to an eigenstate raises
it up the ladder, increasing itsJ, eigenvalue by one unit of h; repeated applications simply create eigen-
states progressively higher up the ladder. J performs the same operations down the ladder, decreasing
the eigenvalue by one unit of h at each application. Can we continue the process indefinitely? No, be-
cause Step 1 showed us that the magnitude of theJ, eigenvalue cannot exceed AV/A.

Step 5: Hence, there must exist on the ladder both a highest eigenstate, Uax
and a lowest one, Ynin.

Just as for the ground state of the SHO, so these states must be annihilated by the action of the
appropriate ladder operator, thereby blocking any further progress on the ladder:

I Ymin = O. (123)

These states, being eigenstates of J,, have the maximum and minimum allowed ei genvalues.

T = AT W, (124)
j;lpmin = )\?nwmin- (125)
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Step 6: [With AP =j, A=(j+1).

We now proceed to relate the eigenvaluefPA of J2 tothe eigenvalue hAT® of 3 by applying to Wnax
the operator identity J_J, = J2 — J2 —RJ, obtained in Step 2. The key is to notice that this operator
annihilates the state because J; does so:

T3 nex = J (34 Wna) =0 (126)
= (32— 2 —R3) Prex (127)
= RPN = (A7) = A7) Wrnax (128)

Since Wnmax is not zero, we conclude that (A — (A®*)2 — A1) = 0, Similarly, by applying to Y, the state
annihilating operator J_J, = J2 — J2 —RJ, wefind that (A — (\T")2 4+ A7) = 0. Solving both conditions
for A then yields the pair of equations,

N = ATOIE) (129
which immediately imply 7 _
}\;nm — _)\;nax = _j’ (131)

where, because of its pivotal role in the argument we introduce amore succinct notation for the maximum
eigenvalue of thehl, operator,

ATEX = | (132)

so that the eigenvalue of theRJ2 operator is:

A =R?j(j+1) (133)

This remarkable result then leads to our final conclusion,
Step 7: 2j =INTEGER]

Our final steps begin with the lowest eigenstate Y, and climb the ladder of eigenstates by operating
repeatedly on it with the raising operatorJA+. Each step increases the eigenvalue by one unit of h; after n
steps we have reached the state (3, )"inin Which has J; eigenvalueR{(ATI" 4 n) =A(— j + n). But we know
that this climb must end, and that the end must be the state of maximum eigenvalue Ynax because thisis
the defining property of Ymax.'® Thus there is some n for which the resulting eigenvalue ishj, giving

n
27
Wetherefore discover two possibilities, integral (for n even) and half-integra (for n odd) angular momen-

tum (in units of h), whereas for orbital angular momentum only integral values were possible. Writing
for the eigenvalues A, = m; we then have the quantisation rules for general angular momentum:

—j+n=j o, |j= n=0,12,... (134)

Integral angular momentum: j=0,1,2,... m=—j,—j+1...0...,j—1,j (135)

135

Half-integral angular momentum: | =g

mj=—j,—j+1..,j—-1]j (136)

The equations actually give two possible solutions, A" = — AT or AJIN = AT 11, but this latter isinconsistent with the
obvious fact that AJYN < A&,

18The reason is that there is only one function which is annihilated by Jy; in other words the solution to J; Wmax = O is
unique.

20



Thus, for an eigenstate of general angular momentum we have,

PYim = PPi(i+D)Wjm (137)
TWim = AMYjm (138)

The angular momentum quantum numbers j and my labelling an eigenstate are often loosely referred to
as the angular momentum and its z—component, or azimuthal projection, although strictly the angular
momentum ishj andhm;. A special case of integral angular momentum is obviously the already encoun-
tered orbital angular momentum J = L; we shall see later that spin angular momentum, J = S, which
cannot be pictured classically as a microscopic spinning top, can have both integral and half-integral
values.

J, Eigenvalue Eigenfunctions J, Eigenvalue
mjﬁ llevmj llevmj mjﬁ
+.Jh— e U i
A W2 | |
Wj3/2 +h I
oy +h Bj1 3,
Jy Wj,1/2 “‘%h_
0 Yo
J Wi-172 -
Y -1 W -1 J_
Wi —3/2 - T
- Wj, 2 : ' '
—jh Wrin = Yj,— Wi = Wi - —h
Angular Momentum j = 0, 1,2,...‘ Angular Momentum j= 3,3 5 ...

Figure 12: The angular momentum spectrum. All are eigenstates of J2 with eigenvaluef® j(j+1).
On theleft isshown the case of integral j, which allows m; = 0. Orbital angular momentum always
gives such a spectrum, withd =L, j =¢and m; =m, = m; so doesintegral spin (eg. the photon has
spin s=1) with J=5 j =sand m; = ms. On theright is shown half-integral angular momentum
(eg. the électron and proton have spin s= 1/2), which forbidsm; = 0.

21



5. SUMMARY.
5.1 ORBITAL ANGULAR MOMENTUM L & ITSCOMMUTATORS,

The QM Orbital Angular Momentum Oper ator is:

L=rxp = —ifirx0O, (139)
or, in cartesian components,

O = yp—zp =iy 22 (140)

x = YPz—Zpy= yaz 3y )’
L, = zp—xp,=—iR zg —xg (141)

y = xR = ax “0z)’
T, = xp -y = —in[x2 —y2 (142)

z = Xy Y= dy “ox/’

First we note that , as befits an observable dynamical variable, L isaHermitian operator because both r
and p are Hermitian,

=0, i=123 (143)
These components do not commute, but obey the angular momentum algebra. This can be expressed
succinctly as:
. (Lo Ly = inL
L xL =ihL or, in fully explicit form, [L L x| = ih—Ly, (144)
[Ly, 2= iALx.

Hence by the generalised Heisenberg uncertainty relation, only one component, conventionally taken to
be L, can be measured with perfect precision (AL, = 0). Once this measurement has been performed,

we cannot determine the other two components precisely (Alx # 0 and ALy # 0) 19 because the operator
L, commutes with neither L nor Ly Formally we can say that an e|genstate of L, cannot also be an
eigenstate of either Ly or L.

However, there isafurther twist to the story: the length of the angular momentum vector can also be
measured with perfect precision along with its z-component because the square of the angular momen-
tum, L2,

L2=T2+L2+L2 (145)
commutes with L,:
[C20]=0, foral i=1,23 (146)

Figure 1 illustrates succinctly the physical consequences of these results: the length and the z— compo-
nent of the angular momentum can be measured exactly, but the angular momentum vector can lie at any
orientation on the cone indicated by the circle. In terms of eigenstates it means that eigenstates ofL, are

19The precise expressions are quite easy to obtain: for a simultaneous eigenstate of L2 and L, we can show that

(L) =(@Ly=0
and that
o=@ = *{E(H 1) —nf}
o that the uncertainties are

h

ALy =ALy= —

X y \/E

Ihae are cgnsistent with Heisenberg's generalised uncertainty relation. The proof uses the raising and lowering operators
L+ = (Lx£Ly)/2 and the orthornormality of the eigenstates.

L+1)—mR

22



also eigenstates of L2, but not of either Ly or L.
5.2 REPRESENTING L IN SPHERICAL POLARS.

In spherical polars we write the unit vectors in the orthogonal (r,6,¢) directions as (e, s, €y); these
are the analogues of the cartesian unit vectors (&, 6y, €,) = (i,j, k). See Figures 2, 3 & 4 for the notation.
Then since orbital angular momentum is always perpendicular to ther-vector, it has no component along
r,

L = (er)x (e Pr+ePo+eppy) (147)
= r(ey Po—€aPp) (148)
) 0 1 0

| quote this result to show explicitly that L only acts on the angles, not on r. This should not surprise us
since angular momentum is concerned with rotation, ie. changing angles, not changing radial coordinate
r. The immediate consequence is that any function of r, such as acentral potential V (r), commutes with
L2 and all the components of L:

V(r),L]=0 and V(r),L? =0 (150)

Also, since the kinetic energy term in the Hamiltonian, 2°

A ﬁz
KE = — 152
o (152)
A O
~ 2m Ih_mr 2mr2 (153)
P (02 20 L2
= “Zm (W“LFE) * 2mrz (154
P 19/,0 L2
= “omi2ar (r a)  Zmr2 (159
depends only onr and L2, it too commutes with the angular momentum and its square:
[H,L]=0 i=123 (156)
| For aCentral Potential |
[H,L? =0 (157)

which imply that eigenstates of energy are also eigenstates of L, and L2. Recall that once we have
chosen to make our energy eigenstates also eigenfunctions of L, they cannot also be made eigenfunctions
of Ly and Ly because these don’t commute with L.

DThis is easy to remember because it is so similar to the classical Kinetic energy

2 2 2 2
_p° _(prtpL)®_pr, Lg
(KB)a = 2m~ 2m  2m  2mr2

(151)

The only difference is the additional quantum correction due to hon-commuting operators:

o h?
—ihp; /mr = f%(Z/r)a/ar
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Finally we note the following expressions for the cartesian components:

- (.. 0 0
Ly = |h_<sm¢ % + cotBcosd %> (158)
L, = —if coscl)i—cotesinq)i (159)
oo 90 a0
- -
L, = _'h_ﬁ (160)
~ 1 0 i) 1 92
2 2 i i . _
L= ﬁ{gne 20 (S'”eae>+s'n29 a¢2}‘ (16D

Note particularly the very simple form taken by L,, which is a consequence of the fact that rotation about
the z-axis corresponds to rotation in the x — y plane which is described only by avarying ¢-angle.
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5.3 QUANTISING ORBITAL ANGULAR MOMENTUM.
5.3.1 SIMULTANEOUSEIGENSTATESOF L2 and L.

Since the commuting operators L2 and L, only act on the angles, their simultaneous eigenstates,
Y:m(6,¢) are only functions of these angles. Their eigenvalues are expressible in terms of two quantum
numbers £ and mwhich are only allowed discrete integer values.

¢ = 01,2,... and for each ¢, mis alowed any of (2/+ 1) values,
m = —/—/¢+1..0,....0—-210¢. (162)
The fact that these quantum numbers are integers comes from the physical requirement that the wave

functions be finite and single-valued. The eigenfunctions Ym(8,¢), known as Spherical Harmonics, are
eigenfunctions of both theL 2 operator,

L2Yem(8,¢) =RP¢(£+ 1) Yim(8,0) (163)

and the L, operator, ~
LzYim(6,9) =hmY;m(6,9) (164)

The form of the normalised eigenfunctions is
Yim(6,) = NemP,™ (cos8) €™, (165)

(the Ny are normalisation constants, seefootnote“) where the associated Legendre Function, Iﬂﬂ (cosh),
are well-studied functions of cosf. As expected for eigenfunctions of Hermitian operators the spherical
harmonics are orthonormal:

[ i (8.6)Yin(8,6) 40 = 818 (166)

where we use the solid angle notation as a convenient shorthand for the angular integration variable,
dQ = sin6dbd¢, with the accompanying shorthand for the integration itself:

/ 40 = /O T o /O "sin0de (167)

[ Nn(®.0)PdR =1, (168)

Finally note that the expansion theorem allows us to write the most general wave function for a particle
whose magnitude of orbital angular momentum ishy/£(¢+ 1), ie. orbital angular momentum quantum
number ¢, as alinear combination of eigenstates with definite projections along the z-axis:

+0 +¢
Yo (8:9)= Y cmYim(6,0), where Y [emf*=1, (169)
m=—/{ m=—/{

For a system in this normalised state the outcome of ameasurement of L2 will certainly yieldP?4(¢ + 1);
but a measurement of L, will yield one of its eigenvalues, hmm=my = —¢,—/+1,..../— 1./, with
probability |cm|?; if the outcome ishm then immediately after the measurement the wave function will be
Yim(6,0).

The angular momentum vector, in units of h, is a vector of length \//(¢+ 1); the only permis-
sible orientations of the vector being those for which its projection onto the z—axis have the values
m=—/¢,—¢+1...,4. Thusfor £ = 1 there are 3 allowed m—values, m= —1,0,1; for £ = 2 there are 5
alowed values, m= —2,—-1,0,1,2. Figure 6 illustrates these rules and emphasises the fact thatLy and
Ey are indeterminate by showing the angular momentum vector as having any orientation corresponding
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to rotations about the z—axis.

5.3.2 QUANTISATION FROM THE PHYSICSOF ANGULAR MOMENTUM
IN A CENTRAL POTENTIAL.

Since in acentral potential, eigenstates of L2and L, areaso eigenstates of energy, we therefore see
that a particle such as an electron in a state of definite energy will also bein an eigenstate ofL2 and L:

It Hye(r) = Ege(r), (170)
then L2Pe(r) = RPL(L+1)Pe(r) £=0,1,2,..., (171)
and LWe(r) = Ampe(r) m=—¢,—¢+1,...,0,....0—1,¢. (172)

That the eigenval ues of L2and L, are guantised as above is shown by writing down the TISE for a central
potential,

H(r,6,¢) We(r,6,0) = E We(r,6,0), (173)
which we can write more explicitly as,
RR (82 20 L2
{_% (W + Fa) + omr2 +V(r)} lIJE(ra ea(b)a: El]JE(r,G,d)) (174)

orinitsfull glory,

R /2 29\ R [1d/. .9\ 1 @
{_?n (WJFFE) ~ 2mr2 [m EE (S'”e@> 3o OT,Q] +V(r)} Ve =Eye  (175)

This equation is solved by separation of variables, writing the wave function as a product:
l'IJE(ra eaq)) = R(r)Y(eaq)) (176)

Thus we obtain the radial equation whose solution depends on the precise form of the potential,

R2 /d?R(r) 2dR(r) RPo(0+1)
_fn( arz Ty ar >+(V(r)+ 2mr2

> R(r) =ER(r), a7
and the angular equation which is independent of the potential:

2
—h? [S_—ie% (snang%q’)) + S'_ane 0 \;(4)92,(1))] Y(8,0) =R?2(£+1)Y(8,9). (178)

which we recognise as the equation for the eigenfunctions and eigenvalues of thel 2 operator,
L2Y(6,¢) =R%0(£+1)Y(8,0) (179)

At this stage the eigenvalue —4(¢ + 1) is an unknown separation constant: we only know that it has the
dimensions of f?; but its value comes from solving this equation. This is accomplished by another step
of variable separation,

Y(6,4) = ©(6) ®(¢). (180)
leading to the very simple ¢ equation,

d*o(9) _

B —mP (). (181)
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where mis aseconAd unknown separation constant. This equation is nothing butL, acti ng on the eigen-
value equation for L,
L. ®(¢) =hmd(9) (182)

The solutions are of the general form _
o(9) =™, (183)

and the physical assumption that the wave function be single-valued in ¢, ie. that ®(¢ + 2nm) = P(¢),
yields the eigenvalues
m=0,+1,+2 +3... (184)

The 6 equation is altogether more complicated,

1 d /. do(®) P B
WE(S”e—de >+[e(e+1)—sin26] 0(6) =0, (185)

This is the associated L egendre equation whose finite solutions, known as the associated L egendre
functions, are well-studied and are labelled by the values of the two constants ¢ and m;

©(8) = P (cos). (186)

The requirement that the solutions be finite imposes a relationship between £ and m,

)

= 0,12,... and for each ¢, mhas (2¢ + 1) alowed values,
m = —4—¢+1,...,0,...,0—1,/. (187)

5.3.3 ORTHONORMALITY OF ANGULAR MOMENTUM EIGENSTATES:

We have now shown that the wave function depends on the energy and on the quantum numbers £, m;
in fact if we look at the equations satisfied by R(r) and Y (6, ¢) we see that the former depends only on
E and ¢, R(r) = Re,(r), while the latter does not involve E at al, but does depend on both ¢ and m,
Y(6,9) =Y/m(0,9). Thus we should write the energy eigenstates as:

We(r) = Wesm(r) = Ree(r) Yem(8, 9). (188)
The angular momentum eigenfunctions, known as spherical harmonics,
Yim(8,) = NimP™ (cos@) ™, (189)

(the Nym, are normalisation constants, see footnote!) are orthonormal, as expected for eigenfunctions of
Hermitian operators:

[ Vi (8,6)Yim(8,6) dQ = 81 S (190)

where we use the solid angle notation as a convenient shorthand for the angular integration variable,
dQ = sin8dBdd, with the accompanying shorthand for the integration itself:

/ 40 = /O T o /O "sin0de (191)

[ Nin(®,0)d0 =1 (192)
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Hence, to normalise the wave function Yem(r) the radial wave function Re,(r) is normalised only when
multiplied by r2: 21

/ IRee(r)[2r2dr = 1. (193)
0

5.3.2 GENERAL ANGULAR MOMENTUM OPERATORS J: QUANTISATION
USING ONLY ABSTRACT COMMUTATION RELATIONS.

The foregoing discussion showed that the eigenfunctions of orbital angular momentum, the spherical
harmonics Y;m(6,¢), do not depend on the detailed form of the potentia: the eigenvalue equations and
the quantisation do not involve the potential. This suggests that al their properties are a consegquence
only of the fact that they are eigenstates of the angular momentum operators, whose properties are in
turn entirely encapsulated in the commutation relations. This is the point of view we take here. The
conseguence will be the discovery that there is more to angular momentum in quantum mechanics that
just orbital angular momentum: there is in addition spin angular momentum. Reserving the symbol
L for orbital angular momentum, we shall use the notation J for angular momentum in general. We
now postulate that in general these abstract angular momentum operators obey the same commutation
relations as those of orbital angular momentum, and are defined through their commutation relations:

PR R [j/):(a‘l/;/] = Iﬁ‘j%a
IxI=if 5,3 = A3, (194)
3,2 = i

From these equations we can deduce that J2 commutes with all the components of J. The proof follows
exactly the sequence egs. (15) to (20) which used only the commutation relations and not the explicit
representation of orbital angular momentum. Defining

P=32+3+2 (195)
the angular momentum commutation relations can be used to show that
[32,3]=0, foral i=1,23 (196)

Since J2 and J, commute they have a common eigenfunction Y m,, with as yet unknown quantum num-
bers j and m; respectively (see Figure 10):

P =P+ Djm, (197)
T m, =hm; Yy m, (198)

The proof of quantisation utilises the raising and lowering operators,
Ji=g+iy with 3l =J. (199)

which are shown to have properties analogous to the raising and lowering operators of the SHO, & and
a: they move us up and down the ladder of eigenstates,

‘j;:l-l'lj,mj = Cij,mjil (200)

21Thisisimportant for the physical interpretation of plots of the radial wave function: one normally plots |r Re(r)|? because
this represents the physical probability density at a distance r from the origin. Of course we must remember that this is
then modulated by the direction-dependent angular wave function [Y;m(6, ) \2 factor to give the full spatial dependence of the
probability density. See Table 1 and Figures 8a,b.
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where ¢ is a constant, ¢ =h{j(j + 1) — m(m=1)}¥/2. It is then possible to show that there is a lowest

eigenstate (as for the SHO) and aso a highest eigenstate (unlike the SHO where the ladder of eigenstates
goes on forever); see Figure 11. Because the raising and lowering operators change the quantum number
m; by one unit thisimmediately leads to the identification of "™ = j, m’j“‘” = —|j. Thusif we start from

the lowest eigenstate, m; = — j and repeatedly apply the raising operator we must eventually reach the
highest state, m; = j, and be able to go no further. If n is the the number of times the raising operator
must be applied to reach the highest state, then we have

—j+n=m™=j or j:g, n=0,12,... (201)

ie, [2j =INTEGER

We therefore discover two possibilities: integral and half-integral angular momentum (in units of h),
whereas for orbital angular momentum only integral values were possible. We then have the quantisation
rules for general angular momentum:

Integral angular momentum: j=0,1,2,... m=—j,—j+1...0...,j—1,j (202)
: . 135 o : :
Half-integral angular momentum: | =g m=—j,—j+1..,j-1] (203)
Note the absence of the m; = O state for half-integral j. Thus, for an eigenstate of general angular

momentum we have,

PYim = PPi(+D)Wjm (204)
j;ll»'j,mj = h_mjl-l'lj,mj (205)

The angular momentum quantum numbers j and m labelling an eigenstate are often referred to as the
angular momentum and its z—component, or azimuthal projection, although strictly the angular momen-
tumishj andhmy. Figure 12 illustrates the properties of the laddder of angular momentum eigenstates. A
speC|aI case of integral angular momentum is obviously the already encountered orbital angular momen-
tum J = L; we shall see later that spin angular momentum, J =S, which cannot be pictured classically
as microscopic spinning top, can have both integral and half-integral values.
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APPENDIX A: SPHERICAL POLAR COORDINATES.

The spherical polar coordinate system is depicted in Figures 2, 3 and the first diagram of Figure 4:
the unit vectors &, e and ey corresponding to the three chosen orthogonal directions are always mutually
perpendicular but vary in orientation with the vector r. Thisis why care must be taken when working
in non-cartesian coordinates. The most elementary way to see thisisto just look at Figures 2, 3 (or the
first diagram of Figure 4), noting that as the vector r changes direction, so does the set of unit vectors
attached rigidly to it. More formally, we can express these unit vectors in terms of the fixed ones, i, j, k
of the cartesian system:

& = isinBcosd+jsinBsin + k cosd (206)
& = —ising+jcos. (207)
e = 1icosBcosd+jcosBsing —ksind. (208)

To prove thiswe need to find the projections of the unit vectors g, eg and g, onto the x—, y—, and z—axes.
Thisis not as difficult as it may seem. First refer to Figure 2 or 3 (the first diagram of Figure 4 may also
help your 3-dimensional visualisation) and notice that the two unit vectors ¢ and e lie in the plane of the
triangle OPQ; but & is perpendicular to it, so also perpendicular to the line OQ and parallel to the x—y
plane, ie. g is perpendicular to the z—axis. The following proofs areillustrated graphically in Figure 4.
(i) Taketheunit vector g : it liesalong the direction of the vector r, so that its projection in the z—direction
isjust %2 1 x cos®; along the x— and y—axes we first project down onto the x — y plane, giving avector of
length 1 x sinB pointing along OQ at an angle ¢ with the x—axis; then we see that its projections onto the
X— and y—axes are simply sinBcos¢ and sinBsin¢ respectively. This can be summarised in the vector
equation:

e =isinBcos¢ +j sinBsing + k cos. (209)

Another way you may know this result is that the vector r has cartesian components,
r=(xY,2) = (rsinécos¢,rsin@sing, r coso), (210)

and dividing by r gives the unit vector along the vector r, which is .

g =

| =

= (sinBcos¢,sinBsing, cosb), (211)

(ii) ey israther special becauseit is perpendicular to the z—axis and it also lies parallel to the x—y plane;
therefore, when projected down onto that plane it still has unit length and lies perpendicular to the line
OQ which is at an angle ¢ with the x—axis. Projection onto the x— and y—axes now gives —sing and
cos¢ respectively,

€ = —ising +j cosé. (212)
(iii) The most difficult oneis &. Sinceit is perpendicular to r its projection on the z—axisisjust —sin@
and it's projection down onto the x —y plane is cosB. The latter projection points along OQ since the

original vector g isin the plane of the triangle OPQ. Hence the projection onto the x— and y—axes are
cosBcosd and cosBsing respectively,

€y =i cosBcosd +j cosBsing —k sinb. (213)

2The notation x denotes simple multiplication in this section and in Figure 13. It has nothing to do with the vector cross
product; its only purpose is to emphasi ze that we are projecting unit vectors of length 1.
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These equations allow usto discover how the unit vectors change with the angles by differentiating them,
remembering that the cartesian unit vectorsi, j, k are constant:

%ee = —isinBcosd —j sinBsind — k cosO

- e (214)
%ee = —icosBsind +j cosbcosd

= ycos6 (215)
%eq, =0 (216)
%% = —icosp—jsind

= —egcosb—esnd (217)
a%er = icosBcosd +j cosBsing —k sinb

= & (218)
%er = —isinBsing +j sinBcosd

= €siné. (219)

Incidentally, since the unit vectors do not depend on the length r of the vector r, d¢/or = O: increasing
the length r does not change any unit vector’s direction.

We can also get these geometrically by the sequences illustrated in Figure 13. The simplest is the
variation of & with 6. As shown in Figure 13a, we ask how g changes when 0 is increased by do:
(i) increasing © by db rotates g by d6 to the new unit vector €. The change, de = € — &, as given
by the triangle of unit vectors illustrated, is in the direction of + by an amount de =(the length of
€ ) x dB = 1 x dB; remember that both & and € are unit vectors, it's only the direction which has
changed. (iii) asimilar argument holds for an increase dé, but now the change requires projection from
the x —y plane up to the g direction, giving an extrafactor of sin®, Figure 13b.

APPENDIX B: AN EXPRESSION FOR THE HAMILTONIAN .

In the text we saw that the kinetic energy term in the classical Hamiltonian is:

2 2 2 2
(KE)y— & _ PrtP)_Pr, Lo (220)

- 2m 2m  2m  2mr2

We now seek the quantum mechanical version of this, IZI\E, which we will find to have an additional term
2(r.p)/r? due to the fact that p; and p, do not commute. The most elegant method | know of finding
the appropriate form for the quantum mechanical p? is motivated by looking at the classical KE and
noticing that it involves aterm L3 . This suggests that we may be able to get somewhere by evaluating
the quantum mechanical L2 and trying to turn it into something containingp2. Since

L2 =13+ 10+L5, (221)
let us work out each term in the sum using the commutation relations:

%, Pl =iRdij, [%,x]=0, and [pi,pj] =0 (222)
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My planisto get al the x,y, z factors to the left and al the momentum operators to the right:

G = (yp.—2p)(yP— 2y
= (YP2)(YP:) — (YP:) (ZBy) — (2y) (YP2) + (2y) (Zy)
In the first and last terms all factors commute and so can be placed in any order; in the second and third
terms there are two factors which don’t commute, but which can be interchanged by using the known
commutation relations. For the second term they are B,z= zp, —ih; for thelast, pyy = ypy —ih. Theterms

can therefore be written with all momentum operators to the right and then rearranged into a suggestive
form:

G = VB -y@p.—inp—2ypy — i+ 26
= VPP +ZP5 — 2yzB; Py +iRypy + 2P (223)
Notice how | have rearranged the commuting factors at my convenience. Now the rest of the calculation

is simple because L2 and L2 have the same structure as L2 with an appropriate permutation of the |abels

X,Y,z. Thus to get L2 we make the following replacements in our equation forL2:
y—Z2Z— X, giving

E32/ = (ZPx—XPz)(zPx — XP2)
= P2+ X2P2 — 22XPc P + iR(ZP, + XPy) (224)

and to get L2 we make the following replacements in our equation for[2:
y — X,Z—Y, giving

L = (2 —YP)(2By —YP2)
X205 -+ Y2 B — 2By B+ IA(XPx + YY) (225)
By adding these expressions and collecting terms together we find

~

L2 = (V+D)R+(C+D) B+ (C+Y) P
—2(XyPx Py + XZPx Pz + YZPy Pz)
+2iR(XPx+ yPy +yBy)

= (C+Y¥+ D)+ +P)
—(CP+ YR +ZP)
—2(XyPx Py + XZPx Pz + YZPy Pz)
+2iR(xPx + yPy + YBy)

— rZﬁZ
—(OCP+Y R +ZP)
—2(XyPx Py + XZPx P, + yzPy P)
+2iR(r.p) (226)

where we have added and subtracted terms in the first line to make an # = x2 + y2 + 22 factor. Notice
also that the cross terms xy, etc contain al possible pairs. The fact that the second term contains some of
the terms that would occur in (r p)? suggests we look at this operator and see what it is; the calculation
israther similar to what we have aready done:

(r-p)? = (XPx+YPy+2P;) (XBx +YBy +2)
= XPXPx +YPyyPy + 20220,
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+2(XyPx By + XZPx Pz + YZPy Pz)
= X(XPx —ih) P+ y(ypy — ih) By + 2(zP; — ih) p;
+2(XyPx By + XZPx Pz + YZPy Pz)
= (XPE+YB;+2p2)
+2(XyPx Py + XZPx Pz + YZPy Pz)
—ih(r.p)
+2(XyPx Py + XZPx Pz + YZPy Pz)
—iR(r.p) (227)

In the first three terms we have reordered non-commuting factors using the commutation relations as
before, while the factors in the cross terms xy etc could be reordered because they all commute. Thisis
very nearly the negative of the terms we found in our expression forL 2, except that the —ihterm lacks a
factor of 2; the result is therefore:

L2=r?p%— (r.p)®+ih(r.p) (228)

which can be solved for p? to give the quantum Kinetic energy operator:

~ P (p? (P, L2
KE = 2m  2mr? Ih_(Zmrz + 2mr2 (229)
b\rz Pr L2
o 2
2m ! + 2mr? (230)

The last step above is trickier than might appear: we have used the fact that rp = rp;, but we aso had
to be very careful of the non-commuting factors in the first term: 23

(r-p)? = (rp)(rp)
= (rp)(rpr) =r(Ber)pr
PO . G
= r(rp—ip using [r,p] = —iAlr -] =if
= r2p?2—ih(r.p) (231)
The additional term coming from the non-classical hon-commuting operators is the one with an explicit
factor of —ih, a clear indication of its quantum origins. You can now see why we didn’t spot it at the

classical level: the classical limit corresponds to replacing quantum operators by classica variables and
taking the limit h — 0, which gives the correct expression for the classical kinetic energy; but going

2In (r.p)? thereisanr to theright of the momentum operator:

(r-ﬁ)z = (rﬁr)z =rpe(rpr) # rzﬁrz

and P does not commute with r. Thisis quite different from the term r2p2 occurring in eq. (228) where r2 isto the left of the
momentum operators. Notice also that p2 and p? are very different as we see by comparing egs. (229) and (230). If you are
uncornvinced, just compare

=(= Iﬁ)z 6r2

o= { 5w g (agh) re g5 (05 ) |

where the angular derivatives also act on the unit vectors to their right giving nontrivial additional terms. Here we have found
away to avoid getting entangled in such calculations; but we cannot do so in Appendix C, where you can see some of the hard
cal culations which would be required.

with the horribly complicated
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the other way, from the classical to the quantum expression we have to take great care: it's not asimple
matter of merely replacing variables by operators, aswe saw in the subtle manipulations in this appendix.

Finally, in spherical polar coordinates we can use the representation f = —ihd/odr to obtain
®_ P _ P 20y L2
“E=om = “om (6r2 Tror ) ome (232)
P19 /,0 L2
= —— (2= 2
2mr2 ar <r ar> T omr? (233)




APPENDIX C: AN EXPRESSION FOR L2 IN SPHERICAL POLARS.

We begin with the angular momentum operator in spherical polar coordinates,

0 1 0
Ih_<e¢69 eem%> (234)

In squaring this we must remember that the unit vectors g and e, are not constants, and that the operator
should always be thought of as operating on some function W(r,8¢). Thus,

(—;ZEZ

B ) 1 9 oy 1 oy

- e‘b%*ﬂﬁ%)‘(%%‘eﬁ—?)

B 0 oy 0 1 oy

- W(W)‘W(%m%)

1a(a¢> 1a<1a¢>
~®5neap \ 23 ) T % sne oo \®sne 9o
. oy _

B %y dep ) 0 0/ 1 oy deg\ 1 oy
= @e)ge e¢%> 3 (%69%(%%)‘(%%)%%
1 0%y dep\ 1 oy 1 9%y deg\ 1 oy
_(e"‘e"’)ﬁawe_(%%)—ea_” ) ( ) %

%o apz T\
Py cosboy 1 Py
362 " Sn6 a8 " 526 392

where we have used the results obtained in Appendix A together with orthogonality of the unit vectors
to evaluate the dot products. We can combine the 0 derivatives into one term to obtain the standard form:

~ 1 0 0 1 @
L2 = Ry —(sinfB- | +—5= =5 . 236
{sme %8 (S” 69>+sin26 a¢2} (230)
A final comment: by combining the results in Appendix B and C we see that we have computed the del-

squared operator in polar coordinates. Using our expression forp? from Appendix B and the expression
above for L2, we have:

(—iR?0% = p
72
_ pr zlh—pr
? 29\ L2
— 2 - ——
= (6r2+r6r>jL r2

2 20 1 9 9 1 @
_ 2 (Y Y, = Y lanp 2 -
= (6r2+r6r+sine 28 (S'”eae> T e a¢2>

Dz_a_z_*_gg_{_ii smei +ia_2
~0r2 rodr  sin@oe 09/  sin?0 092
which is the usual expression quoted in mathematics books. That the angle-dependent terms are simply

related to the square of the orbital angular momentum operator cannot of course be deduced from these
texts.

ie. (237)
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Figure 6. The vector model of angular momentum, depicting the quasi-classical orbital angular mo-
mentum vector as having length hy/¢4(¢+ 1) for an eigenstate of angular momentum, and its 2¢ + 1
alowed projections on the z—axis. The vector’s length is the square root of the eigenvalue of 32 and
the projections are the (quantised) eigenvalues, hm, of Jwithm=.—¢¢+1,...¢ These are the
only possible outcomes of a measurement of these variables for an eigenstate. In other words, for an
eigenstate Wem(r) = Ree(r)Yem(6,¢), an ensemble measurement would yield the expectation values

\/ (32) = \/I'T2€(€ +1), and (J,) =Am with zero uncertainty, AJ = 0 and AJ, = 0.
The diagrams show various ways of illustrating the quantum mechanics of orbital angular momentum,
emphasising the fact that the x— and y—components are not determined.

Figure 8a. Polar plots of the the first few spherical harmonics.
Here we show projections of the probability distributions

Yin(8,0)[2 = (210~ |@un($) > = N P™ (cos)
onto the z—y plane for £ = 0,1, 2, 3. The distance from the origin of points on the curve represents this
probability asindicated in the £ = 0 plot. Since the probability density is independent of the azimuthal
angle ¢, the actual distribution is obtained by rotating the plots about the z—axis. Figure 8b shows the
resulting 3-dimensional shapes (actually, their square root, |Ym|) for £ =0, 1,2 obtained by rotating the
plots of Figure 8a about the z-axis.
Figure 8b. The square root of the probability distributions, [Ym(0,¢)| for £ = 0,1,2. The distance

from the origin of a point on the 3-dimensional surface represents |Y¥m(6,¢)|, where (6, ¢) represents the
direction of the vector drawn from the origin to that point.

Figure8.
Figure8.
Figure8.

Figure8.
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