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ANGULARMOMENTUM IN QUANTUMMECHANICS. 1

1. ORBITAL ANGULARMOMENTUM L & ITS COMMUTATORS.

For a classical particle with linear momentum p and position vector r, theOrbital Angular Momen-
tum is:

Lcl r p (1)

To find the quantum mechanical orbital angular momentum we follow the rules for quantising a classical
problem: replace all classical dynamical variables by the appropriate operator,

p p ih̄∇ ih̄
∂
∂x

∂
∂y

∂
∂z

(2)

and r r r x y z (3)

giving the QM Orbital Angular Momentum Operator:

L r p ih̄r ∇ (4)

or, in cartesian components,2

Lx ypz zpy ih̄ y
∂
∂z

z
∂
∂y

(5)

Ly zpx xpz ih̄ z
∂
∂x

x
∂
∂z

(6)

Lz xpy ypx ih̄ x
∂
∂y

y
∂
∂x

(7)

First we note that , as befits an observable dynamical variable,L is a Hermitian operator because both r
and p are Hermitian,

L†i Li i 1 2 3 (8)

Next we study the commutation relations between the three components of the angular momentum oper-
ator using the canonical commutation relations. These state that coordinates commute with alien compo-
nents of the momentum operator, but do not commute with their own, xi p j ih̄δi j, and that coordinates
commute with coordinates and momenta with momenta, xi x j 0, pi p j 0:

1This topic is quite long and complicated. I recommend that you first look at the summary section at the end, p.21, and
then work through the material several times, looking through the summary at regular intervals. Your primary aim should be
to understand the results given in the summary. The detailed derivations and discussion are to create that understanding by
showing where the results come from. There are, of course, several techniques and concepts of considerable importance in the
derivations, so they should not be skipped.

2I remember the cross-product by drawing a circle in my mind with the components x y z arranged clockwise. The compo-
nents of the cross-product, reading from left to right in the equation, always occur in cyclic order (ie. clockwise order) for the
first (positive sign) term and anti-cyclic for the second (negative sign) term. Thus, for the z-component Lz, you start the cyclic
sequence with z, giving z x y, giving Lz xpy ; the anti-cyclic one is z y x, giving Lz xpy ypx. This is just
another way of expressing the rule based on the determinant, but it’s easier to keep in your head without the need to write down
any intermediate steps.

1



[bLx;bLy] = [(ybpz� zbpy);(zbpx� xbpz)] and using the distributive law for commutators;

= [ybpz;zbpx]� [ybpz;xbpz]� [zbpy;zbpx]+ [zbpy;xbpz]

= ybpx[bpz;z]�0�0+ xbpy[z; bpz] taking out factors which commute;

= (xbpy� ybpx)[z; bpz];

= ih̄(xbpy� ybpx); using [z; bpz] = ih̄

= ih̄bLz: (9)

Similarly for the other possible commutators, giving

[bLx;bLy] = ih̄bLz; (10)

[bLz;bLx] = ih̄bLy; (11)

[bLy;bLz] = ih̄bLx: (12)

Notice that the commutators give +ih̄ when, reading from left to right, the components are in cyclic order
just as in a cross product. Indeed, these commutators can be written in an even more succinct form as a
cross product: bL� bL = ih̄ bL: (13)

This form of the commutators shows how unintuitive non-commuting operators can be: the cross product
of two parallel ordinary vectors vanishes, but not when they are operators and their components don’t
commute!

The physical consequences of this failure to commute are remarkable and follow from the generalised
Heisenberg uncertainty relation

∆A∆B � 1
2
jh[bA; bB]ij;

6= 0 if [bA; bB] 6= 0: (14)

Hence only one component, conventionally taken to bebLz, can be measured with perfect precision (∆Lz =
0). Once this measurement has been performed, we can learn nothing whatever about the other two
components (∆Lx 6= 0 and ∆Ly 6= 0) because the operator bLz commutes with neither bLx nor bLy. Formally
we can say that an eigenstate ofbLz cannot also be an eigenstate of eitherbLx or bLy.

However, there is a further twist to the story: the square of the angular momentum, L2 commutes
with bLz. Hence the length of the angular momentum vector can also be measured with perfect precision
along with its z-component. To prove this we consider separately each term in L2, which is defined as

bL2 = bL2
x +bL2

y +bL2
z : (15)

First,3

[bL2
x ;bLz] = bLx[bLx;bLz]+ [bLx;bLz]bLx

= �ih̄(bLxbLy +bLybLx) using [bLx;bLz] =�ih̄bLy; (16)

3Using the identity obtained by adding and subtracting bAbBbA from

[bA2; bB] = bA2 bB� bBbA2

= bAbAbB� bAbBbA+ bAbBbA� bBbAbA
= bA(bAbB� bBbA)+(bAbB� bBbA)bA
= bA[bA; bB]+ [bA; bB]bA
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Similarly,

[bL2
y ;bLz] = bLy[bLy;bLz]+ [bLy;bLz]bLy

= +ih̄(bLybLx +bLxbLy); using [bLy;bLz] = ih̄bLx (17)

while, finally and obviously, bLz commutes with its own square,

[bL2
z ;bLz] = 0 (18)

Adding eqs. (16), (17), and (18), shows that bL2 indeed commutes with bLz:

[bL2;bLy] = [bL2
x ;bLy]+ [bL2

y;bLy]+ [bL2
z ;bLy] = 0 (19)

Similar calculations for the other components give the same result, which we can summarise as:

[bL2;bLi] = 0; for all i = 1;2;3 (20)

Since we have chosen to measurebLz exactly, the relevant commutator is [bL2;bLz] = 0 (i = 3), which shows
that we can also measure bL2 exactly: it is possible to measure exactly both the length and one compo-
nent of the angular momentum vector, but at the price of knowing nothing whatever about the other two
components. This can be illustrated with Figure 1, which shows a vector of known length and projection
onto the z-axis, but which can have any position on the circle obtained by rotating the vector around the
z-axis. In formal terms our result tells us that eigenfunctions ofbLz are also eigenfunctions of bL2, but not
of bLx nor of bLy. Of course the choice ofbLz rather than bLx or bLy is an arbitrary convention; the point is that
only one may be chosen from the three components because the corresponding operators do not commute.
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Figure 1: Picturing what can be measured exactly. This quasi-classical picture is not to be taken too
literally - for an eigenstate hbLzi and hbL2i are the eigenvalues of the corresponding operators. L is a
quasi-classical vector representing the quantum mechanical angular momentum.
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2. REPRESENTING bL IN SPHERICAL POLARS.4

In many physical applications, such as the quantum mechanics of the hydrogen atom, we either have
exact or approximate spherical symmetry. This, together with angular momentum’s association with
rotation, demands that we consider writing down the angular momentum operators in spherical polar
coordinates; this also leads to a great simplification and a recognition that the orbital angular momentum
operators only involve the angular variables θ and ϕ.

In cartesian coordinates the orthogonal x�;y�, and z�axes, are fixed and lie along the orthogonal
unit vectors ex = i;ey = j, and ez = k; but in spherical polar coordinates the unit vectors, er;eθ, and
eϕ, although orthogonal, vary in direction with the direction of the position vector r as may be seen
by inspecting Figure 2. Any vector may be written as an expansion in terms of these so–called basis
vectors:

V = iVx + jVy +kVz (21)

= er Vr + eθVθ+ eϕ Vϕ (22)

special cases being the position vector,

r = ix+ jy+kz (23)

= er r (24)

and the gradient operator,

∇ = i
∂
∂x

+ j
∂
∂y

+k
∂
∂z

; (25)

= er
∂
∂r

+ eθ
1
r

∂
∂θ

+ eϕ
1

r sin θ
∂

∂ϕ
: (26)

Of course you could just look up this last expression in a maths text book, but the following argu-
ment shows that it is almost obvious: The gradient involves differentials with respect to the 3 orthog-
onal infinitesimal distances: dx;dy;dz for cartesian coordinates and, as inspection of Figure 3 shows,
dr;rdθ;r sin θdϕ for spherical polars.

In spherical polars the momentum operator is therefore

bp = �ih̄ ∇ (27)

= er bpr + eθ bpθ+ eϕ bpϕ; (28)

= �ih̄

�
er

∂
∂r

+ eθ
1
r

∂
∂θ

+ eϕ
1

r sin θ
∂

∂ϕ

�
; (29)

enabling us to identify the polar components of the momentum operator:

bpr =�ih̄
∂
∂r

; bpθ =�ih̄
1
r

∂
∂θ

; bpϕ =�ih̄
1

r sin θ
∂

∂ϕ
: (30)

To find an expression for the orbital angular momentum operator we need the cross product of the vector
r = rer with the momentum operator. This brings in the cross products of the unit vector er with all three

4You may find this section somewhat intimidating at a first reading. First read through the summary Sections 5 at the end of
this chapter then work through the material several times, referring to the summary at the end of each reading. If you still feel
it’s beyond you then just skim the material and take the results on trust. As long as you understand the meaning of the results
in the summary you should be able to follow the subsequent developments.
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orthogonal unit vectors. These can be found by inspecting Figure 2 and using the right–hand rule for the
cross–product:

er� er = 0; (31)

er� eθ = eϕ; (32)

er� eϕ = �eθ; (33)

making it easy to obtain the angular momentum operator in spherical polar coordinates,bL := r�bp
= (rer)� (er bpr + eθ bpθ+ eϕ bpϕ)

= r (eϕ bpθ� eθbpϕ)

= �ih̄

�
eϕ

∂
∂θ
� eθ

1
sinθ

∂
∂ϕ

�
; (34)

Where we have used our previous results for the cross products and the momentum operators. This
expression immediately shows the important property alluded to above: the orbital angular momen-
tum operator only acts on the angular variables. Thus for a potential not depending on direction,
ie. a central potential with V (r) � V (r;θ;ϕ) = V (r), the angular momentum commutes with the
potential:

For a central potential: [bL;V (r)] = 0 (35)

which means that each component and any power of the angular momentum commutes with the potential:

For a central potential: [bLi;V (r)] = 0 i = 1;2;3 (36)

and [bL2;V (r)] = 0 (37)

We conclude this section by giving expressions for the orbital angular momentum operatorsbLx;bLy;bLz

and bL2 in spherical polars. For this we need to find the projections of the unit vectors er;eθ and eϕ onto
the x�;y�; and z�axes. The details are given in Appendix A and Figure 4.

er = i sinθcos ϕ+ j sinθsin ϕ+k cosθ (38)

eθ = i cosθcos ϕ+ j cosθsin ϕ�k sinθ: (39)

eϕ = �i sinϕ+ j cosϕ: (40)

Having established the projections of vectors er;eθ and eϕ onto the x�;y�;z�axes we can simply rewrite
the angular momentum vector in eq. (34), using the above equations, as:

bL = �ih̄

�
eϕ

∂
∂θ
� eθ

1
sinθ

∂
∂ϕ

�
;

= �ih̄

�
i
�
�sinϕ

∂
∂θ
� cos θ

sinθ
cosϕ

∂
∂ϕ

�
+ j
�

cosϕ
∂
∂θ
� cosθ

sinθ
sinϕ

∂
∂ϕ

�
+k

sinθ
sinθ

∂
∂ϕ

�
;

= �ih̄

�
�i
�

sinϕ
∂
∂θ

+ cotθcos ϕ
∂

∂ϕ

�
+ j
�

cosϕ
∂
∂θ
� cotθsin ϕ

∂
∂ϕ

�
+k

∂
∂ϕ

�
; (41)

Hence we identify the three cartesian components of angular momentum:

bLx = ih̄

�
sinϕ

∂
∂θ

+ cotθcos ϕ
∂

∂ϕ

�
(42)

bLy = �ih̄

�
cos ϕ

∂
∂θ
� cotθsinϕ

∂
∂ϕ

�
(43)

bLz = �ih̄
∂

∂ϕ
(44)
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Note particularly the very simple form taken by bLz - this is a consequence of the fact that Lz is the
component of rotation about the z�axis, ie. in a plane parallel to the x�y plane; this clearly corresponds
to only the azimuthal angle ϕ varying. We can obtain the operator as follows by referring to Figure 3:

bLz = (lever arm projected onto x� y plane)(bp projected onto x� y plane)

= (r sin θ)(bpϕ)

= (r sin θ)(�ih̄
1

r sinθ
∂

∂ϕ
)

= �ih̄
∂

∂ϕ

There is no particularly easy way to obtain bL2, because eθ and eϕ both depend on θ and ϕ; this contrasts
with the constant unit vectors i, j, and k. But the answer derived in Appendix C is quite simple:

bL2 = �h̄2
�

1
sinθ

∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
: (45)

This is a remarkable result: apart from the factor �h̄2, and a missing 1=r2, this is just the angular part of
the del–squared operator in spherical polars,

∇ 2 =
1
r2

∂
∂r

�
r2 ∂

∂r

�
+

1
r2

�
1

sin θ
∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
: (46)

=

�
∂2

∂r2 +
2
r

∂
∂r

�
+

1
r2

�
1

sin θ
∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
: (47)

Recalling the kinetic energy part of the Hamiltonian

cKE =
bp2

2m
(48)

= � h̄2

2m
∇ 2 (49)

we immediately see that this can be written in terms of the squared angular momentum as

cKE =� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 (50)

In the following section we explain how we might have guessed this simple result from a knowledge of
the classical kinetic energy.
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3. CLASSICAL & QUANTUM KINETIC ENERGIES.

To appreciate the important result for the kinetic energy obtained in the previous section let us first
consider the classical case. Resolve the total momentum vector along and perpendicular to r:5

p = pr +p? (51)

Since these are orthogonal and, of course, commuting classical vectors,

pr:p? = p?:pr = 0: (52)

Looking at Figure 5 we see that the lever arm of p? about the origin is r so that the magnitude of the
orbital angular momentum is

Lcl = r p?; and therefore, p2
? =

L2
cl

r2 ; (53)

Hence we easily obtain the classical Kinetic energy as the sum of linear and rotational energies:

(KE)cl =
p2

2m
=

(pr +p?)2

2m
=

p2
r

2m
+

L2
cl

2mr2 (54)

where we used p2
r = pr:pr = p2

r . To obtain the QM form one might be tempted to simply replace pr and
Lcl by the quantum mechanical operators. This would be wrong: the quantum mechanical calculation is
altogether more tricky because the two momentum operators don’t commute,

bpr:bp? 6= bp?:bpr; with bpr:bp? = 0 but bp?:bpr =�2ih̄
bpr

r
6= 0: (55)

This shows itself through the fact that although all the unit vectors are independent of r, they all vary
with the angles θ and ϕ. 6 In Appendix B we show how to calculate this additional termbp?:bpr. Recalling
the expression for the r-component of the momentum operator,

bpr =�ih̄
∂
∂r

and hence, bp2
r =�h̄2 ∂2

∂r2 (56)

the full Quantum Mechanical KE operator becomes:

cKE =
bp2

2m
(57)

=
bp2

r

2m
� ih̄

bpr

mr
+

bL2

2mr2 (58)

= � h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 (59)

= � h̄2

2m
1
r2

∂
∂r

�
r2 ∂

∂r

�
+

bL2

2mr2 (60)

This expression shows a close resemblance to the classical expression for the KE, eq. (54): the additional
term, �ih̄bpr=mr, is clearly of quantum origin because it has an explicit factor of h̄ even before we use a
particular representation for the operator. It arises from the non-commuting operators and corresponds to
the ‘extra’ term (2=r)∂=∂r which we failed to discover by unthinkingly translating the classical formula

5Where the momentum vector along r is pr = er pr, and the one perpendicular to r is p? = eθ pθ+ eϕ pϕ
6See Appendix A for a full discussion

7



into operator form. This expression will be important in our study of the hydrogen atom. For the present
we note that the Hamiltonian now takes the form,

bH =� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 +V (r) for a central potential. (61)

This form for the Hamiltonian in any central potential immediately demonstrates that it commutes
with all the angular momentum operatorsbLi and bL2. This is because bLi and bL2, (a) only act on the angular
variables θ;ϕ, and therefore do not effect any r–dependent terms, and (b) commute with the operatorbL2

and hence they commute with bL2=2mr2 and other r-dependent terms in the Hamiltonian. Hence we find
the important results,

[bH;bLi] = 0 i = 1;2;3 (62)

For a Central Potential

[ bH; bL2] = 0 (63)

which imply that eigenstates of energy are also eigenstates ofbLz and bL2. Recall that once we have
chosen to make our energy eigenstates also eigenfunctions ofbLz they cannot be eigenfunctions ofbLx andbLy because these don’t commute withbLz.

4. QUANTISING ORBITAL ANGULAR MOMENTUM.

We are now in a position to prove that the eigenvalues ofbL2 and bLz are quantised. Since in a central
potential, eigenstates of these two operators are also eigenstates of energy, we therefore see that an
electron in a state of definite energy will also be in an eigenstate ofbL2 and bLz:

If bHψE(r) = EψE(r); (64)

then bL2ψE(r) = h̄2 `(`+1)ψE(r) ` = 0;1;2; : : : ; (65)

and bLzψE(r) = h̄mψE(r) m =�`;�`+1; : : : ;0; : : : ; `�1; `: (66)

(We will show later that there is also the possibility of `�values 1=2;3=2;5=2; : : : for angular momentum
in general, including spin, but not for orbital angular momentum.) From the above summary we see that
the electron wave function should not only carry the energy label E ( or equivalently the quantum number
n, as in the infinite square well, harmonic oscillator or the hydrogen atom), but also those corresponding
to the angular momentum, ψE;`;m, or ψn;`;m.

There are two approaches to demonstrating the quantisation of angular momentum:
APPROACH (1), by seeking directly the eigenfunctions of bL2 and bLz. I will motivate this approach
physically by showing how the eigenvalue equations arise in seeking the energy eigenfunctions for a
particle in a central potential. We will apply this later to our study of the hydrogen atom.
APPROACH (2), by treating the angular momentum operators as abstract entities defined entirely by
their commutation relations. It is this approach which reveals the possibility of non-integer quantum
numbers ` and m and which enables us to handle the purely quantum mechanical phenomenon of spin.
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4.1 APPROACH (1): THE EIGENFUNCTIONS & EIGENVALUES OF
. ORBITAL ANGULAR MOMENTUM OPERATORS.

We could start our discussion by seeking directly the eigenfunctions ofbL2 and bLz. Looking back at
the representations of these two operators in spherical polars, eqs. (44) & (45), we notice thatbLz only
operates on the variable ϕ, eq. (44), so that its eigenfunctions are functions of ϕ,

bLz Φm(ϕ) = mh̄Φm(ϕ); (67)

ie. � ih̄
∂Φm(ϕ)

∂ϕ
= mh̄Φm(ϕ); (68)

The solution to this equation is simple and unique:

Φm(ϕ) = eimϕ; (69)

but there is nothing yet to tell us the value of m, the azimuthal quantum number; for this we need to
introduce some further physical information.
In contrast, the operator bL2, eq. (45), operates on both θ and ϕ, so that its eigenfunctions depend on both
variables; we will also find that the eigenfunctions depend on m as well as the L2 eigenvalue `:

bL2Ylm(θ;ϕ) =h̄2 `(`+1)Ylm(θ;ϕ) (70)

Again, at this stage, there is nothing to tell us the value of the quantum number `.
To introduce the physics we consider a particle in a central potential V (r) and we proceed to solve

the TDSE in the obviously appropriate spherical coordinate system:

bH(r;θ;ϕ) ψE(r;θ;ϕ) = E ψE(r;θ;ϕ); (71)

which we can write more explicitly as,(
� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 +V (r)

)
ψE(r;θ;ϕ);= E ψE(r;θ;ϕ) (72)

or in its full glory,�
� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
� h̄2

2mr2

�
1

sinθ
∂
∂θ

�
sin θ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
+V (r)

�
ψE = E ψE (73)

Separation of variables: To solve this equation we first notice that the angular dependent terms are
very nearly separated from the r�dependent ones; all we have to do is multiply by r2 to achieve the full
separation. This suggests that a way to find the solutions is to try to find one in the form

ψE(r;θ;ϕ) = R(r)Y (θ;ϕ) (74)

Substituting into the TISE and multiplying by 2mr2=R(r)Y (θ;ϕ) we obtain

r2

R(r)

�
h̄2
�

d2R(r)
dr2 +

2
r

dR(r)
dr

��
+ (E�V (r))2mr2 =� 1

Y (θ;ϕ)
bL2Y (θ;ϕ)

=
�h̄2

Y (θ;ϕ)

�
1

sinθ
∂
∂θ

�
sinθ

∂Y (θ;ϕ)
∂θ

�
+

1

sin2 θ
∂2Y (θ;ϕ)

∂ϕ2

�
:

This equation must hold for all values of the three independent variables r;θ and ϕ; but the the left side
is only a function of r, the right only a function of θ and ϕ. They can only possibly be equal for arbitrary

9



choices of r;θ and ϕ if they don’t vary at all, ie. they are constant. We call this constant, which has the
dimensions of h̄2

h̄2 `(`+1)

for convenience, where ` is an unknown dimensionless constant.7 Thus we obtain the radial equation
whose solution depends on the precise form of the potential,

� h̄2

2m

�
d2R(r)

dr2 +
2
r

dR(r)
dr

�
+

�
V (r)+

h̄2`(`+1)
2mr2

�
R(r) = E R(r); (75)

and the angular equation which is independent of the potential:

bL2Y (θ;ϕ) =�h̄2
�

1
sinθ

∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
Y (θ;ϕ) =h̄2`(`+1)Y (θ;ϕ): (76)

Something remarkable has happened: the differential operator which operates on the function Y (θ;ϕ) is
none other than our recent acquaintance, bL2, and this equation is nothing but the statement that Y (θ;ϕ)
is an eigenfunction of the angular momentum operator bL2, with the corresponding eigenvalue being
the constant h̄2`(`+1): bL2Y (θ;ϕ) =h̄2`(`+1)Y (θ;ϕ) (77)

Remember that at this point we know nothing about the numerical value of `. Incidentally, it’s not
too surprising that this equation occurs in this problem: for a central potentialbL2 commutes with the
Hamiltonian, and therefore eigenstates of energy - in this case ψE = R(r)Y (θ;ϕ) - are also eigenstates
of bL2. We now anticipate that the wave function is also an eigenstate ofbLz because this operator also
commutes with bH. To see that this is so we now separate the eigenvalue equation for Y (θ;ϕ) by trying a
solution of the form:

Y (θ;ϕ) = Θ(θ)Φ(ϕ): (78)

Substituting into the equation, multiplying by sin2 θ=ΘΦ and isolating the ϕ�dependent terms on the
right we obtain the separated form,

1
Θ(θ)

sinθ
d

dθ

�
sinθ

dΘ(θ)
dθ

�
+ `(`+1)sin2 θ =� 1

Φ(ϕ)
d2Φ(ϕ)

dϕ2 : (79)

Once again we see that this equation must hold for all values of the independent variables θ and ϕ, so
that the left and right sides must be a constant. Calling this as yet unknown dimensionless constant m2,
we obtain for the θ equation:

1
sinθ

d
dθ

�
sinθ

dΘ(θ)
dθ

�
+

�
`(`+1)� m2

sin2 θ

�
Θ(θ) = 0: (80)

This is the associated Legendre equation whose finite solutions, known as the associated Legendre
functions, are well-studied and are labelled by the values of the two constants ` and m:

Θ(θ) = Pm
` (cos θ): (81)

The ϕ equation is very simple:
d2Φ(ϕ)

dϕ2 =�m2 Φ(ϕ): (82)

The solutions are of the general form
Φ(ϕ) = eimϕ; (83)

7At this stage we have no idea whatever what the value of ` is and we are just anticipating the form that will come out of
subsequent discussion. The discussion would go exactly the same way if we called this constant A, α, β or anything else.
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which is also a solution of the eigenvalue equation,

bLz Φ(ϕ) =h̄mΦ(ϕ): (84)

Indeed, if we act on this last equation withbLz we simply obtain �h̄2 times eq. (82):

bL2
z Φ(ϕ) =�h̄2 d2Φ(ϕ)

dϕ2 =h̄2m2 Φ(ϕ); (85)

thereby confirming that h̄m is the eigenvalue ofbLz and that Φm(ϕ) its eigenfunction. Thus we have ex-
plicitly verified that eigenfunctions of the Hamiltonian for a central potential are also eigenfunctions ofbL2 and bLz.

Applying Physical conditions to the wave function: We now impose the physically reasonable re-
striction that the wave function be single-valued; this is certainly consistent with the probability inter-
pretation of the wave function.8 Since ϕ and ϕ+2πcorrespond to the same physical point, we require

Φ(ϕ+2π) = Φ(ϕ); (86)

which immediately shows that m must be an integer:

m = 0;�1;�2;�3; : : : (87)

Thus do we obtain the quantisation of the z�component of orbital angular momentum: bLz has quan-
tised eigenvalues h̄m;m = 0;�1;�2;�3; : : :.

We now return to the θ�equation which can be simplified by using the variable w = cos θ:9�
(1�w2)

d2

dw2 �2w
d

dw
+ `(`+1)� m2

1�w2

�
Pjmj` (w) = 0 (88)

This can be solved by the series method: as with the harmonic oscillator, it turns out that a physically
acceptable wave function, finite at cosθ =�1, only results if the series terminates after a finite number
of terms. This imposes a relationship between ` and m:

` = 0;1;2; : : : and for each `, m has (2`+1) allowed values,

m = �`;�`+1; : : : ;0; : : : ; `�1; `: (89)

The angular momentum vector, in units of h̄, is a vector of length
p

`(`+1); the only permissible
orientations of the vector being those for which its projection onto the z�axis have the values m =
�`;�`+ 1 : : : ; `. Thus for ` = 1 there are 3 allowed m�values, m = �1;0;1; for ` = 2 there are 5 al-
lowed values, m =�2;�1;0;1;2. Figure 6 illustrates these rules and emphasises the fact thatbLx and bLy

are indeterminate by showing the angular momentum vector as having any orientation corresponding to
rotations about the z�axis.10

4.1.1 ORTHONORMALITY OF ANGULAR MOMENTUM EIGENSTATES:

8This argument for single-valuedness of ψ is not generally valid, but is correct for orbital angular momentum. In fact, since
the physical quantity is the probability density jψj2 ∝ jΦ(ϕ)j2, we only require it to be single-valued. This only makes m real.
The operator approach will show that 2`+ 1 = integer, which implies that m = 1=2 is also possible - a value appropriate for
electron spin. So the the spin wave functions for the electron are double-valued!

9That the solution of this equation is independent of the sign of m is obvious because the equation contains m only in the

form m2. Thus Pm
` = P�m

` = Pjmj`
10Note also the rather peculiar characteristic of the rules which never have the vector pointing precisely along the z�axis!

This is because the vector has length
p

`(`+1) rather than the value ` obtained from Bohr’s original theory.
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We have now shown that the wave function depends on the energy and on the quantum numbers `;m;
in fact if we look at the equations satisfied by R(r) and Y (θ;ϕ) we see that the former depends only on
E and `, R(r) = RE `(r), while the latter does not involve E at all, but does depend on both ` and m,
Y (θ;ϕ) =Y`m(θ;ϕ). Thus we should write the energy eigenstates not as ψE(r) but as:

ψE `m(r) = RE `(r)Y`m(θ;ϕ): (90)

To be a physically acceptable wave function ψE `m(r) must also be normalised:

R jψE `m(r)j2 d3x = 1; where the 3-D volume element, Figure 7, is d3x � r2 sinθdθdϕ dr; (91)

or, in full detail (note especially the factor of r2),

Z ∞

0
r2 dr

Z 2π

0
dϕ

Z π

0
sin θdθjψE `m(r)j2 = 1: (92)

A convenient shorthand for the angular integration variable is the solid angle notation, dΩ� sinθdθdϕ,
with the accompanying shorthand for the integration itself:

Z
dΩ�

Z 2π

0
dϕ

Z π

0
sinθdθ (93)

It is conventional and convenient to normalise the spherical harmonics,11

Y`m(θ;ϕ)� N`m Pjmj` (cos θ)eimϕ; (94)

Z
jY`m(θ;ϕ)j2 dΩ = 1; (95)

which means that, to normalise the wave function ψE `m(r) the radial wave function RE`(r) is normalised
only when multiplied by r2: 12 Z ∞

0
jRE`(r)j2 r2 dr = 1: (96)

As expected for eigenfunctions of Hermitian operators, the spherical harmonics are orthonormal:
Z

Y �
`0m0(θ;ϕ)Y`m(θ;ϕ)dΩ = δ`0` δm0m (97)

Moreover the most general solution to the TISE equation is a linear combination of spherical harmonics:
they constitute a complete set of functions for which the expansion theorem holds. Thus the angular part
of any wave function may be expanded in terms of eigenfunctions ofbL2 and bLz:

ψ(r;θ;ϕ) =
∞

∑̀
=0

+`

∑
m=�`

c`;m ψE`(r)Y`m(θ;ϕ); (98)

11The normalising factor, with a conventional but arbitrary phase factor (�1)m, is

N`m = (�1)m
�
(2`+1)(`�m)!

4π(`+m)!

�1=2

:

12This is important for the physical interpretation of plots of the radial wave function: one normally plots jr RE`(r)j2 because
this represents the physical probability density at a distance r from the origin. Of course we must remember that this is
then modulated by the direction-dependent angular wave function jỲ m(θ;ϕ)j2 factor to give the full spatial dependence of the
probability density.
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where the coefficients c`;m play the same role as the cn in our general discussion of the expansion theorem.
Normalisation of this state requires,

∞

∑̀
=0

+`

∑
m=�`

jc`;mj2 = 1; (99)

which tells us that the jc̀ ;mj2 are probabilities. Thus, for a system in the normalised state Y (θ;ϕ) a
measurement of both the square and z�component of orbital angular momentum yields, with probability
jc`;mj2; one of the eigenvalues h̄2`(`+ 1) of bL2 and one of the eigenvalues, h̄m;m � m` = �`;�`+
1; : : : ; `� 1; `, of bLz corresponding to that `�value; immediately after the measurement which gave the
values (`;m) the wave function will be Ỳ m(θ;ϕ). If only the squared angular momentum is measured,
yielding h̄2`(`+ 1), then the probability for this outcome is the sum over the possible, but unmeasured
m`�values, ∑+`

m=�` jc`;mj2.
If we are concerned with a state of definite total orbital angular momentum, then it must be an

eigenstate of bL2, fixing the value of the quantum number `. This is a frequently used special case of the
more general expansion theorem in eq. (98). The angular part of the wave function would then be:

Y(`)(θ;ϕ) =
+`

∑
m=�`

cmY`m(θ;ϕ); where
+`

∑
m=�`

jcmj2 = 1; (100)

For a system in this normalised state the outcome of a measurement ofbL2 will certainly yield h̄2`(`+1);
but a measurement of bLz will yield one of its eigenvalues, h̄m;m � m` = �`;�`+ 1; : : : ; `� 1; `, with
probability jcmj2; if the outcome is h̄m then immediately after the measurement the wave function will be
Y`m(θ;ϕ).
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4.1.2 PLOTTING THE SPHERICAL HARMONICS - THE SHAPES OF ATOMS.

Before we deal with the operator approach to angular momentum, let us briefly examine the prop-
erties of the spherical harmonics with a view to its application in understanding the shapes of atoms.
Since the relevant angular part of the quantum mechanical probability density (per unit solid angle,
dΩ = sinθdθdϕ) is independent of the azimuthal angle ϕ,

jY`m(θ;ϕ)j2 = N2
`m jPjmj` j2jeimϕj2

= N2
`m

h
Pjmj`

i2
; (101)

we see that all systems with a central potential have rotational symmetry about the z�axis. Put another
way, a plot of the angular probability distribution can always be pictured as a 2-dimensional figure rotated
about the z�axis; examples of the first few are shown in Figures 8a and 8b. The first three angular
momentum eigenfunctions are also tabulated in Table 1; notice that the states have definite parity which,
being (�1)`, alternates in a nearly familiar manner.13 Of course this is another example of our theorem
that eigenstates of energy are also eigenstates of parity if the potential is symmetric, V (�r) =V (r). This
is trivially satisfied for a central potential because under a mirror reflection the length r of the vector r
doesn’t change.

Figure 9: Illustrating the parity transformation in spherical polar coodinates.

13In fact the mirror reflection of axes, (x;y;z)! (�x;�y;�z) only alters the angles in spherical polars. From Figure 9 we
see that in the reflected coordinate system ( a left-handed system) the components of r change:

(r;θ;ϕ) ! (r;π�θ;ϕ+π) giving sinθ! sinθ; cosθ!�cosθ;

leading to,

Pjmj` (cosθ)! (�1)`�jmjPjmj` (cosθ)

and also, eimϕ ! eiπeimϕ = (�1)jmjeimϕ :

Combining these then gives the result quoted: Ỳ m ! (�1)`Y`m.
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Table 1. Angular Momentum Eigenfunctions, ψE `m(r) = RE `(r)Y`m(θ;ϕ):

Quantum Associated Legendre Azimuthal
Numbers Function Function Spherical Harmonic

Parity= (�1)`

` m Pjmj` (cos θ) eimϕ Y`m(θ;ϕ) = N`m Pjmj` eimϕ

0 0 1 1 Y0;0 =
�

1
4π
� 1

2

1 0 cosθ 1 Y1;0 =
�

3
4π
� 1

2 cosθ

�1 sinθ e�iϕ Y1;�1 =�� 3
8π
� 1

2 sinθe�iϕ

2 0 1
2(3cos2 θ�1) 1 Y2;0 =

�
5

16π
� 1

2 (3cos2 θ�1)

�1 3sin θcosθ e�iϕ Y2;�1 =�� 15
8π
� 1

2 sinθcos θe�iϕ

�2 3sin2 θ e�2iϕ Y2;�2 =
� 15

32π
� 1

2 sin2 θe�2iϕ

3 0 1
2(5cos3 θ�3cosθ) 1 Y3;0 =

�
7

16π
� 1

2 (5cos3 θ�3cosθ)

�1 3
2 sinθ(5cos2 θ�1) e�iϕ Y3;�1 =�� 21

64π
� 1

2 sin θ(5cos2 θ�1)e�iϕ

�2 15sin2 θcos θ e�2iϕ Y3;�2 =
�

105
32π
� 1

2 sin2 θcos θe�2iϕ

�3 15sin3 θ e�3iϕ Y3;�3 =�� 35
64π
� 1

2 sin3 θe�3iϕ

Notes: (a) The mysterious � in the last column are conventional phase factors - see footnote11.
(b) The associated Legendre functions are indeed functions of cosθ since sinθ =

p
(1� cos2 θ).

(c) The normalised components of the wave function for a given ` are:

Θ`m(cosθ) =
p

2πN`m Pjmj` (cos θ)
Z +1

�1
Θ`m0(w)Θ`m(w)dw = δm0m;

where w = cosθ is the integration variable, the range of integration being θ= 0 ! π,

Φm(ϕ) = 1p
2π eimϕ

Z 2π

0
Φ�

m0(ϕ)Φm(ϕ)dϕ = δm0m;

and
Y`m(θ;ϕ) = Θ`m(θ)Φm(ϕ).

Z
Y �
`m0(θ;ϕ)Y`m(θ;ϕ)dΩ = δm0m:
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4.2 APPROACH (2): GENERAL ANGULAR MOMENTUM OPERATORS.

One of the great surprises in the history of 20th century physics was the discovery of spin, a form of
angular momentum intrinsic to an isolated particle such as an electron. The surprise is that spin cannot
be understood quantitatively as the analogue of a spinning top or the earth spinning on its axis - these
are really examples of orbital angular momentum in disguise: the material making up a top or the earth
is simply orbiting about the spin axis. In fact the electron is known experimentally to be so small that
it’s impossible to imagine how it could produce its angular momentum h̄=2 by spinning no faster than the
speed of light. This is our motivation for studying angular momentum in a purely abstract way, assuming
that the general angular momentum operatorbJ represents all forms of angular momentum: orbital, whenbJ = bL; spin, when bJ = bS; and situations which occur when spinning particles are also orbiting - such as
an electron in an atom - for which the total angular momentum is the vector sumbJ = bL+ bS. Without
any prior knowledge about the spatial structure of spin, our approach will be purely algebraic: angular
momentum in QM is represented by the Hermitian vector operatorbJ which obeys the commutation
relations:

bJ�bJ = ih̄bJ
8<:

[ bJx; bJy] = ih̄ bJz;

[ bJz; bJx] = ih̄ bJy;

[ bJy; bJz] = ih̄ bJx:

(102)

From these equations we can deduce thatbJ2 commutes with all the components ofbJ. The proof follows
exactly the sequence eqs. (15) to (20) which used only the commutation relations and not the explicit
representation of orbital angular momentum:

bJ2 = bJ2
x + bJ2

y + bJ2
z : (103)

For each term we use the identity [bA2; bB] = bA[bA; bB]+ [bA; bB]bA to obtain:

[ bJ2
x ; bJz] = bJx[bJx; bJz]+ [bJx; bJz]bJx

= �ih̄(bJx bJy + bJy bJx): (104)

Similarly, [bJ2
y ; bJz] = +ih̄(bJy bJx + bJx bJy); (105)

while, finally and obviously, bJz commutes with its own square, [bJ2
z ; bJz] = 0. Thus the two non-vanising

terms cancel, showing that bJ2 indeed commutes with bJz. Similar proofs go through for the other two
components, giving finally:

[bJ2; bJi] = 0; for all i = 1;2;3 (106)

Since bJ2 and bJz commute they have a common eigenfunction ψ, with as yet unknown eigenvalues h̄2λ
and h̄λz respectively: bJ2ψ =h̄2λψ (107)bJzψ =h̄λz ψ (108)

We now proceed to show that the commutation relations alone imply the quantisation rules obtained
before for orbital angular momentum, but with a bonus: half-integral angular momentum is also possible.
The analysis is divided into several distinct steps:
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Step 1: jλzj �
p

λ

Since the square of an operator has a positive expectation value we obtain,

hbJ2i= h bJ2
x i+ hbJ2

y i+ hbJ2
z i � h bJ2

z i; (109)

which translates immediately into a statement about the eigenvalues:14

λ2
z � λ or, taking the square root of these positive numbers, jλzj �

p
λ: (110)

Notice that λz can have any sign, but λ is positive because it’s the eigenvalue of the square of an operator.
This result is not surprising when we refer to the quasi-classical Figure 10, since the projection of the
angular momentum vector onto the z�axis can never be larger than the length of the vector.15

�
�
�
�
�
�
�
�
��

J

h̄
p

λ
�
�
�
��

�
�
���

�	
x

- y

6
z

?

6

h̄λz

bJ2ψ =h̄2λψ

bLzψ=h̄λz ψ

jλzj �
p

λ

Figure 10: Picturing the inequality, jλzj �
p

λ for an eigenstate of bJz and bJ2 with eigenvalues h̄λz

and h̄2λ.

14Remember that the eigenvalue µ of an operator bO is just the expectation value of that operator when the system is in the
corresponding eigenstate:

h bOi =

Z
ψ� bOψdx = µ

Z
ψ�ψdx for an eigenstate, Ôψ = µψ;

= µ for a normalised eigenstate.

15Deeper thought reveals that the result is more subtle: the quasi-classical picture does no more than depict the content of
the eigenvalue equations. That the eigenvalues do indeed behave this way is true but not trivial to prove. In the case of spin
one has to prove that the expectation value of a squared operator is positive without knowing anything about the nature of the
‘coordinates’ upon which the wave function depends - indeed such coordinates may not even exist for intrinsic properties like
spin. However if the wave functions are dependent on the spatial variables, as in the case of orbital angular momentum, then
it’s clear why the square of a Hermitian operator has positive expectation value:

h bO2i =

Z
ψ� bO2 ψdx =

Z
( bOψ)� bOψdx since bO is Hermitian

=
Z
j bOψj2 dx � 0; since it’s the integral of a positive quantity.

The matrix or Dirac formalism is needed to prove this result when, as for spin angular momentum, we do not know what is the
analogue of the coordinates x;y;z or r;θ;ϕ. That is the great merit of Heisenberg’s matrix form of QM and why we will use it
later for dealing with spin.
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Step 2: Introducing raising & lowering operators, bJ�.

As we discovered in solving the SHO, the introduction of raising and lowering operators is the key
to the analysis. They are simple linear combinations of bJx and bJy:

bJ� � bJx� ibJy with bJ†
+ = bJ�: (111)

Their properties all follow from those of the bJ�operators:16

bJ+ bJ� = bJ2� bJ2
z +h̄bJz (112)bJ� bJ+ = bJ2� bJ2
z �h̄bJz (113)

or, more succinctly, bJ� bJ� = bJ2� bJ2
z �h̄bJz; (114)

leading to:
[ bJ�; bJ�] =�2h̄bJz; (115)

and
[ bJz; bJ�] =�h̄bJ�: (116)

Finally, and most simply, they commute withbJ2 because bJx and bJy do:

[bJ2; bJ�] = 0: (117)

This has the immediate consequence that,

Step 3: bJ�ψ are eigenstates of bJ2 with the same eigenvalue as ψ.

To prove this we merely act on ψ withbJ2 and bJ� in each order:

bJ�(bJ2 ψ) = bJ2(bJ�ψ)

= h̄2λ(bJ�ψ); using on the left that ψ is an eigenstate ofbJ2, (118)

thereby showing that (bJ�ψ) is also an eigenfunction ofbJ2 with the same eigenvalue h̄2λ as ψ.

Step 4: bJ�ψ are eigenstates of bJz with eigenvalues h̄(λz�1).

The proof shows why bJ� are called raising and lowering operators. We use their commutators withbJz in the form, bJz bJ� = bJ� bJz�h̄bJ�; (119)

to find

bJz( bJ�ψ) = bJ�( bJzψ)�h̄bJ�ψ from the above commutator;

= h̄λz(bJ�ψ)�h̄bJ�ψ since bJzψ=h̄λzψ: (120)

16Thus, for example,

bJ+ bJ� = (bJx + i bJy)( bJx � i bJy)

= bJ2
x + bJ2

y � i( bJx bJy� bJy bJx)

Recognising the first two terms as bJ2� bJ2
x and the bracketed combination as the commutator [bJx; bJy] = ih̄bJz we obtain the result

quoted. The other results all follow in a similar manner.
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Collecting the (bJ�ψ) terms on the right together gives the result:

bJz( bJ�ψ) =h̄(λz�1)( bJ�ψ) (121)

6

?

bJ+
bJ�

bJ+ψmax = 0

bJ�ψmin = 0

bJz Eigenvalue

h̄λmin
z

h̄(λz�2)

h̄(λz�1)

h̄λz

h̄(λz +1)

h̄(λz +2)

h̄λmax
z

Eigenfunction

ψmin

( bJ�)2ψ

bJ�ψ

ψ

bJ+ψ

( bJ+)2ψ

ψmax

bJ2 Eigenvalue

h̄2 λ

h̄2λ

h̄2λ

h̄2λ

h̄2λ

h̄2λ)

h̄2λ

Figure 11: Illustrating the action of the raising and lowering operators on the eigenstates of bJz

and bJ2. All are eigenstates of bJ2 with eigenvalue h̄2λ.

Figure 11 depicts the action of these ladder operators: a single application of bJ+ to an eigenstate raises
it up the ladder, increasing its bJz eigenvalue by one unit of h̄; repeated applications simply create eigen-
states progressively higher up the ladder. bJ� performs the same operations down the ladder, decreasing
the eigenvalue by one unit of h̄ at each application. Can we continue the process indefinitely? No, be-
cause Step 1 showed us that the magnitude of the bJz eigenvalue cannot exceed h̄

p
λ.

Step 5: Hence, there must exist on the ladder both a highest eigenstate, ψmax

. and a lowest one, ψmin.

Just as for the ground state of the SHO, so these states must be annihilated by the action of the
appropriate ladder operator, thereby blocking any further progress on the ladder:

bJ+ψmax = 0; (122)bJ�ψmin = 0: (123)

These states, being eigenstates of bJz, have the maximum and minimum allowed eigenvalues:

bJzψmax = λmax
z ψmax; (124)bJzψmin = λmin
z ψmin: (125)
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Step 6: With λmax
z � j, λ = j( j+1).

We now proceed to relate the eigenvalue h̄2λ of bJ2 to the eigenvalue h̄λmax
z of bJz by applying to ψmax

the operator identity bJ� bJ+ = bJ2 � bJ2
z �h̄bJz obtained in Step 2. The key is to notice that this operator

annihilates the state because bJ+ does so:bJ� bJ+ψmax = bJ�(bJ+ψmax) = 0 (126)

= (bJ2� bJ2
z �h̄bJz)ψmax (127)

= h̄2(λ� (λmax
z )2�λmax

z )ψmax (128)

Since ψmax is not zero, we conclude that (λ�(λmax
z )2�λmax

z ) = 0. Similarly, by applying to ψmin the state
annihilating operator bJ� bJ+ = bJ2� bJ2

z �h̄bJz we find that (λ� (λmin
z )2+λmin

z ) = 0. Solving both conditions
for λ then yields the pair of equations,

λ = λmax
z (λmax

z +1) (129)

λ = λmin
z (λmin

z �1) (130)

which immediately imply 17

λmin
z =�λmax

z �� j; (131)

where, because of its pivotal role in the argument we introduce a more succinct notation for the maximum
eigenvalue of the h̄bJz operator,

λmax
z � j (132)

so that the eigenvalue of the h̄bJ2 operator is:

h̄2λ =h̄2 j( j+1) (133)

This remarkable result then leads to our final conclusion,
Step 7: 2 j =INTEGER

Our final steps begin with the lowest eigenstate ψmin and climb the ladder of eigenstates by operating
repeatedly on it with the raising operator bJ+. Each step increases the eigenvalue by one unit of h̄; after n
steps we have reached the state (bJ+)nψmin which has bJz eigenvalue h̄(λmin

z +n) =h̄(� j+n). But we know
that this climb must end, and that the end must be the state of maximum eigenvalue ψmax because this is
the defining property of ψmax.18 Thus there is some n for which the resulting eigenvalue is h̄ j, giving

� j+n = j or, j =
n
2
; n = 0;1;2; : : : (134)

We therefore discover two possibilities, integral (for n even) and half-integral (for n odd) angular momen-
tum (in units of h̄), whereas for orbital angular momentum only integral values were possible. Writing
for the eigenvalues λz � m j we then have the quantisation rules for general angular momentum:

Integral angular momentum: j = 0;1;2; : : : mj =� j;� j+1 : : :0 : : : ; j�1; j (135)

Half-integral angular momentum: j =
1
2
;
3
2
;

5
2
; : : : m j =� j;� j+1 : : : ; j�1; j (136)

17The equations actually give two possible solutions, λmin
z =�λmax

z or λmin
z = λmax

z +1, but this latter is inconsistent with the
obvious fact that λmin

z < λmax
z .

18The reason is that there is only one function which is annihilated by bJ+; in other words the solution to bJ+ψmax = 0 is
unique.

20



Thus, for an eigenstate of general angular momentum we have,

bJ2ψ j;mj = h̄2 j( j+1)ψ j;mj (137)bJzψ j;mj = h̄m j ψ j;mj (138)

The angular momentum quantum numbers j and mj labelling an eigenstate are often loosely referred to
as the angular momentum and its z�component, or azimuthal projection, although strictly the angular
momentum is h̄ j and h̄mj. A special case of integral angular momentum is obviously the already encoun-
tered orbital angular momentum bJ = bL; we shall see later that spin angular momentum, bJ = bS, which
cannot be pictured classically as a microscopic spinning top, can have both integral and half-integral
values.
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bJ�

bJz Eigenvalue

m jh̄
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�2h̄
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ψ j;2

ψmax = ψ j; j

Angular Momentum j = 0;1;2; : : : Angular Momentum j = 1
2 ;

3
2 ;

5
2 ; : : :
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Figure 12: The angular momentum spectrum. All are eigenstates ofbJ2 with eigenvalue h̄2 j( j+1).
On the left is shown the case of integral j, which allows mj = 0. Orbital angular momentum always
gives such a spectrum, with bJ = bL, j = ` and m j = m` = m; so does integral spin (eg. the photon has
spin s=1) with bJ = bS, j = s and m j = ms. On the right is shown half-integral angular momentum
(eg. the electron and proton have spin s = 1=2), which forbids mj = 0.
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5. SUMMARY.

5.1 ORBITAL ANGULAR MOMENTUM bL & ITS COMMUTATORS.

The QM Orbital Angular Momentum Operator is:

bL = r�bp = �ih̄r� ∇ ; (139)

or, in cartesian components,

bLx = ybpz� zbpy =�ih̄

�
y

∂
∂z
� z

∂
∂y

�
; (140)

bLy = zbpx� xbpz =�ih̄

�
z

∂
∂x
� x

∂
∂z

�
; (141)

bLz = xbpy� ybpx =�ih̄

�
x

∂
∂y
� y

∂
∂x

�
: (142)

First we note that , as befits an observable dynamical variable, bL is a Hermitian operator because both r
and bp are Hermitian, bL†

i =
bLi; i = 1;2;3 (143)

These components do not commute, but obey the angular momentum algebra. This can be expressed
succinctly as:

bL� bL = ih̄ bL or, in fully explicit form,

8<:
[bLx;bLy] = ih̄bLz;

[bLz;bLx] = ih̄bLy;

[bLy;bLz] = ih̄bLx:

(144)

Hence, by the generalised Heisenberg uncertainty relation, only one component, conventionally taken to
be bLz, can be measured with perfect precision (∆Lz = 0). Once this measurement has been performed,
we cannot determine the other two components precisely (∆Lx 6= 0 and ∆Ly 6= 0) 19 because the operatorbLz commutes with neither bLx nor bLy. Formally we can say that an eigenstate of bLz cannot also be an
eigenstate of either bLx or bLy.

However, there is a further twist to the story: the length of the angular momentum vector can also be
measured with perfect precision along with its z-component because the square of the angular momen-
tum, L2, bL2 = bL2

x +bL2
y +bL2

z : (145)

commutes with bLz:
[bL2;bLi] = 0; for all i = 1;2;3 (146)

Figure 1 illustrates succinctly the physical consequences of these results: the length and the z� compo-
nent of the angular momentum can be measured exactly, but the angular momentum vector can lie at any
orientation on the cone indicated by the circle. In terms of eigenstates it means that eigenstates ofbLz are

19The precise expressions are quite easy to obtain: for a simultaneous eigenstate of bL2 and bLz, we can show that

hbLxi= hbLyi= 0

and that

hbL2
xi= hbL2

yi=
h̄2

2
f`(`+1)�m2g

so that the uncertainties are

∆Lx = ∆Ly =
h̄p
2

q
`(`+1)�m2

These are consistent with Heisenberg’s generalised uncertainty relation. The proof uses the raising and lowering operatorsbL� = (bLx�bLy)=2 and the orthornormality of the eigenstates.
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also eigenstates of bL2, but not of either bLx or bLy.

5.2 REPRESENTING bL IN SPHERICAL POLARS.

In spherical polars we write the unit vectors in the orthogonal (r;θ;ϕ) directions as (er;eθ;eϕ); these
are the analogues of the cartesian unit vectors (ex;ey;ez) = (i; j;k). See Figures 2, 3 & 4 for the notation.
Then since orbital angular momentum is always perpendicular to the r-vector, it has no component along
r,

bL = (er r)� (er bpr + eθ bpθ+ eϕ bpϕ) (147)

= r (eϕ bpθ� eθbpϕ) (148)

= �ih̄

�
eϕ

∂
∂θ
� eθ

1
sinθ

∂
∂ϕ

�
; (149)

I quote this result to show explicitly that bL only acts on the angles, not on r. This should not surprise us
since angular momentum is concerned with rotation, ie. changing angles, not changing radial coordinate
r. The immediate consequence is that any function of r, such as a central potential V (r), commutes withbL2 and all the components of bL:

[V (r); bL] = 0 and [V (r); bL2] = 0 (150)

Also, since the kinetic energy term in the Hamiltonian, 20

cKE =
bp2

2m
(152)

=
bp2

r

2m
� ih̄

bpr

mr
+

bL2

2mr2 (153)

= � h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 (154)

= � h̄2

2m
1
r2

∂
∂r

�
r2 ∂

∂r

�
+

bL2

2mr2 (155)

depends only on r and bL2, it too commutes with the angular momentum and its square:

[bH;bLi] = 0 i = 1;2;3 (156)

For a Central Potential

[ bH; bL2] = 0 (157)

which imply that eigenstates of energy are also eigenstates ofbLz and bL2. Recall that once we have
chosen to make our energy eigenstates also eigenfunctions ofbLz they cannot also be made eigenfunctions
of bLx and bLy because these don’t commute with bLz.

20This is easy to remember because it is so similar to the classical Kinetic energy

(KE)cl =
p2

2m
=

(pr +p?)2

2m
=

p2
r

2m
+

L2
cl

2mr2 (151)

The only difference is the additional quantum correction due to non-commuting operators:

�ih̄bpr=mr =� h̄2

2m
(2=r)∂=∂r
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Finally we note the following expressions for the cartesian components:

bLx = ih̄

�
sinϕ

∂
∂θ

+ cotθcos ϕ
∂

∂ϕ

�
(158)

bLy = �ih̄

�
cos ϕ

∂
∂θ
� cotθsin ϕ

∂
∂ϕ

�
(159)

bLz = �ih̄
∂

∂ϕ
(160)

bL2 = �h̄2
�

1
sinθ

∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
: (161)

Note particularly the very simple form taken bybLz, which is a consequence of the fact that rotation about
the z-axis corresponds to rotation in the x� y plane which is described only by a varying ϕ-angle.
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5.3 QUANTISING ORBITAL ANGULAR MOMENTUM.

5.3.1 SIMULTANEOUS EIGENSTATES OF bL2 and bLz.

Since the commuting operators bL2 and bLz only act on the angles, their simultaneous eigenstates,
Y`m(θ;ϕ) are only functions of these angles. Their eigenvalues are expressible in terms of two quantum
numbers ` and m which are only allowed discrete integer values:

` = 0;1;2; : : : and for each `, m is allowed any of (2`+1) values,

m = �`;�`+1; : : : ;0; : : : ; `�1; `: (162)

The fact that these quantum numbers are integers comes from the physical requirement that the wave
functions be finite and single-valued. The eigenfunctions Ỳ m(θ;ϕ), known as Spherical Harmonics, are
eigenfunctions of both the bL2 operator,

bL2Y`m(θ;ϕ) =h̄2`(`+1)Y`m(θ;ϕ) (163)

and the bLz operator, bLzY`m(θ;ϕ) =h̄mY`m(θ;ϕ) (164)

The form of the normalised eigenfunctions is

Y`m(θ;ϕ)� N`m Pjmj` (cos θ)eimϕ; (165)

(the N`m are normalisation constants, see footnote11) where the associated Legendre Function, Pjmj` (cosθ),
are well-studied functions of cosθ. As expected for eigenfunctions of Hermitian operators the spherical
harmonics are orthonormal: Z

Y �
`0m0(θ;ϕ)Y`m(θ;ϕ)dΩ = δ`0` δm0m (166)

where we use the solid angle notation as a convenient shorthand for the angular integration variable,
dΩ� sinθdθdϕ, with the accompanying shorthand for the integration itself:

Z
dΩ�

Z 2π

0
dϕ

Z π

0
sinθdθ (167)

Z
jY`m(θ;ϕ)j2 dΩ = 1; (168)

Finally note that the expansion theorem allows us to write the most general wave function for a particle
whose magnitude of orbital angular momentum is h̄

p
`(`+1), ie. orbital angular momentum quantum

number `, as a linear combination of eigenstates with definite projections along the z-axis:

Y(`)(θ;ϕ) =
+`

∑
m=�`

cmY`m(θ;ϕ); where
+`

∑
m=�`

jcmj2 = 1; (169)

For a system in this normalised state the outcome of a measurement ofbL2 will certainly yield h̄2`(`+1);
but a measurement of bLz will yield one of its eigenvalues, h̄m;m � m` = �`;�`+ 1; : : : ; `� 1; `, with
probability jcmj2; if the outcome is h̄m then immediately after the measurement the wave function will be
Y`m(θ;ϕ).

The angular momentum vector, in units of h̄, is a vector of length
p

`(`+1); the only permis-
sible orientations of the vector being those for which its projection onto the z�axis have the values
m =�`;�`+ 1 : : : ; `. Thus for ` = 1 there are 3 allowed m�values, m = �1;0;1; for ` = 2 there are 5
allowed values, m = �2;�1;0;1;2. Figure 6 illustrates these rules and emphasises the fact thatbLx andbLy are indeterminate by showing the angular momentum vector as having any orientation corresponding
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to rotations about the z�axis.

5.3.2 QUANTISATION FROM THE PHYSICS OF ANGULAR MOMENTUM
. IN A CENTRAL POTENTIAL.

Since in a central potential, eigenstates of bL2 and bLz are also eigenstates of energy, we therefore see
that a particle such as an electron in a state of definite energy will also be in an eigenstate ofbL2 and bLz:

If bHψE(r) = EψE(r); (170)

then bL2ψE(r) = h̄2 `(`+1)ψE(r) ` = 0;1;2; : : : ; (171)

and bLzψE(r) = h̄mψE(r) m =�`;�`+1; : : : ;0; : : : ; `�1; `: (172)

That the eigenvalues of bL2 and bLz are quantised as above is shown by writing down the TISE for a central
potential, bH(r;θ;ϕ) ψE(r;θ;ϕ) = E ψE(r;θ;ϕ); (173)

which we can write more explicitly as,(
� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 +V (r)

)
ψE(r;θ;ϕ);= E ψE(r;θ;ϕ) (174)

or in its full glory,�
� h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
� h̄2

2mr2

�
1

sinθ
∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
+V(r)

�
ψE = E ψE (175)

This equation is solved by separation of variables, writing the wave function as a product:

ψE(r;θ;ϕ) = R(r)Y (θ;ϕ) (176)

Thus we obtain the radial equation whose solution depends on the precise form of the potential,

� h̄2

2m

�
d2R(r)

dr2 +
2
r

dR(r)
dr

�
+

�
V (r)+

h̄2`(`+1)
2mr2

�
R(r) = E R(r); (177)

and the angular equation which is independent of the potential:

�h̄2
�

1
sinθ

∂
∂θ

�
sinθ

∂Y (θ;ϕ)
∂θ

�
+

1

sin2 θ
∂2Y (θ;ϕ)

∂ϕ2

�
Y (θ;ϕ) =h̄2`(`+1)Y (θ;ϕ): (178)

which we recognise as the equation for the eigenfunctions and eigenvalues of thebL2 operator,

bL2Y (θ;ϕ) =h̄2`(`+1)Y (θ;ϕ) (179)

At this stage the eigenvalue �h̄2`(`+1) is an unknown separation constant: we only know that it has the
dimensions of h̄2; but its value comes from solving this equation. This is accomplished by another step
of variable separation,

Y (θ;ϕ) = Θ(θ)Φ(ϕ): (180)

leading to the very simple ϕ equation,

d2Φ(ϕ)
dϕ2 =�m2 Φ(ϕ): (181)
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where m is a second unknown separation constant. This equation is nothing butbLz acting on the eigen-
value equation for bLz, bLz Φ(ϕ) =h̄mΦ(ϕ) (182)

The solutions are of the general form
Φ(ϕ) = eimϕ; (183)

and the physical assumption that the wave function be single-valued in ϕ, ie. that Φ(ϕ+2nπ) = Φ(ϕ),
yields the eigenvalues

m = 0;�1;�2;�3 : : : (184)

The θ equation is altogether more complicated,

1
sinθ

d
dθ

�
sinθ

dΘ(θ)
dθ

�
+

�
`(`+1)� m2

sin2 θ

�
Θ(θ) = 0; (185)

This is the associated Legendre equation whose finite solutions, known as the associated Legendre
functions, are well-studied and are labelled by the values of the two constants ` and m:

Θ(θ) = Pjmj` (cosθ): (186)

The requirement that the solutions be finite imposes a relationship between ` and m,

` = 0;1;2; : : : and for each `, m has (2`+1) allowed values,

m = �`;�`+1; : : : ;0; : : : ; `�1; `: (187)

5.3.3 ORTHONORMALITY OF ANGULAR MOMENTUM EIGENSTATES:

We have now shown that the wave function depends on the energy and on the quantum numbers `;m;
in fact if we look at the equations satisfied by R(r) and Y (θ;ϕ) we see that the former depends only on
E and `, R(r) = RE `(r), while the latter does not involve E at all, but does depend on both ` and m,
Y (θ;ϕ) =Y`m(θ;ϕ). Thus we should write the energy eigenstates as:

ψE(r)� ψE `m(r) = RE `(r)Y`m(θ;ϕ): (188)

The angular momentum eigenfunctions, known as spherical harmonics,

Y`m(θ;ϕ)� N`m Pjmj` (cos θ)eimϕ; (189)

(the N`m are normalisation constants, see footnote11) are orthonormal, as expected for eigenfunctions of
Hermitian operators: Z

Y �
`0m0(θ;ϕ)Y`m(θ;ϕ)dΩ = δ`0` δm0m (190)

where we use the solid angle notation as a convenient shorthand for the angular integration variable,
dΩ� sinθdθdϕ, with the accompanying shorthand for the integration itself:

Z
dΩ�

Z 2π

0
dϕ

Z π

0
sinθdθ (191)

Z
jY`m(θ;ϕ)j2 dΩ = 1; (192)
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Hence, to normalise the wave function ψE `m(r) the radial wave function RE`(r) is normalised only when
multiplied by r2: 21 Z ∞

0
jRE`(r)j2 r2 dr = 1: (193)

5.3.2 GENERAL ANGULAR MOMENTUM OPERATORS bJ: QUANTISATION
. USING ONLY ABSTRACT COMMUTATION RELATIONS.

The foregoing discussion showed that the eigenfunctions of orbital angular momentum, the spherical
harmonics Y`m(θ;ϕ), do not depend on the detailed form of the potential: the eigenvalue equations and
the quantisation do not involve the potential. This suggests that all their properties are a consequence
only of the fact that they are eigenstates of the angular momentum operators, whose properties are in
turn entirely encapsulated in the commutation relations. This is the point of view we take here. The
consequence will be the discovery that there is more to angular momentum in quantum mechanics that
just orbital angular momentum: there is in addition spin angular momentum. Reserving the symbolbL for orbital angular momentum, we shall use the notation bJ for angular momentum in general. We
now postulate that in general these abstract angular momentum operators obey the same commutation
relations as those of orbital angular momentum, and are defined through their commutation relations:

bJ�bJ = ih̄bJ
8<:

[ bJx; bJy] = ih̄ bJz;

[ bJz; bJx] = ih̄ bJy;

[ bJy; bJz] = ih̄ bJx:

(194)

From these equations we can deduce thatbJ2 commutes with all the components ofbJ. The proof follows
exactly the sequence eqs. (15) to (20) which used only the commutation relations and not the explicit
representation of orbital angular momentum. Defining

bJ2 = bJ2
x + bJ2

y + bJ2
z : (195)

the angular momentum commutation relations can be used to show that

[bJ2; bJi] = 0; for all i = 1;2;3 (196)

Since bJ2 and bJz commute they have a common eigenfunction ψj;mj , with as yet unknown quantum num-
bers j and mj respectively (see Figure 10):

bJ2ψ j;mj =h̄2 j( j+1)ψ j;mj (197)

bJzψ j;mj =h̄m j ψ j;mj (198)

The proof of quantisation utilises the raising and lowering operators,

bJ� � bJx� ibJy with bJ†
+ = bJ�: (199)

which are shown to have properties analogous to the raising and lowering operators of the SHO, ba† andba: they move us up and down the ladder of eigenstates,

bJ�ψ j;mj = cψ j;mj�1 (200)

21This is important for the physical interpretation of plots of the radial wave function: one normally plots jr RE`(r)j2 because
this represents the physical probability density at a distance r from the origin. Of course we must remember that this is
then modulated by the direction-dependent angular wave function jỲ m(θ;ϕ)j2 factor to give the full spatial dependence of the
probability density. See Table 1 and Figures 8a,b.
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where c is a constant, c = h̄f j( j + 1)�m(m� 1)g1=2. It is then possible to show that there is a lowest
eigenstate (as for the SHO) and also a highest eigenstate (unlike the SHO where the ladder of eigenstates
goes on forever); see Figure 11. Because the raising and lowering operators change the quantum number
m j by one unit this immediately leads to the identification of mmax

j = j, mmin
j =� j. Thus if we start from

the lowest eigenstate, mj = � j and repeatedly apply the raising operator we must eventually reach the
highest state, mj = j, and be able to go no further. If n is the the number of times the raising operator
must be applied to reach the highest state, then we have

� j+n = mmax
j = j or, j =

n
2
; n = 0;1;2; : : : (201)

. ie., 2 j = INTEGER

We therefore discover two possibilities: integral and half-integral angular momentum (in units of h̄),
whereas for orbital angular momentum only integral values were possible. We then have the quantisation
rules for general angular momentum:

Integral angular momentum: j = 0;1;2; : : : mj =� j;� j+1 : : :0 : : : ; j�1; j (202)

Half-integral angular momentum: j =
1
2
;
3
2
;

5
2
; : : : m j =� j;� j+1 : : : ; j�1; j (203)

Note the absence of the mj = 0 state for half-integral j. Thus, for an eigenstate of general angular
momentum we have,

bJ2ψ j;mj = h̄2 j( j+1)ψ j;mj (204)bJzψ j;mj = h̄m j ψ j;mj (205)

The angular momentum quantum numbers j and mj labelling an eigenstate are often referred to as the
angular momentum and its z�component, or azimuthal projection, although strictly the angular momen-
tum ish̄ j andh̄mj. Figure 12 illustrates the properties of the laddder of angular momentum eigenstates. A
special case of integral angular momentum is obviously the already encountered orbital angular momen-
tum bJ = bL; we shall see later that spin angular momentum,bJ = bS, which cannot be pictured classically
as microscopic spinning top, can have both integral and half-integral values.
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APPENDIX A: SPHERICAL POLAR COORDINATES.

The spherical polar coordinate system is depicted in Figures 2, 3 and the first diagram of Figure 4:
the unit vectors er;eθ and eϕ corresponding to the three chosen orthogonal directions are always mutually
perpendicular but vary in orientation with the vector r. This is why care must be taken when working
in non-cartesian coordinates. The most elementary way to see this is to just look at Figures 2, 3 (or the
first diagram of Figure 4), noting that as the vector r changes direction, so does the set of unit vectors
attached rigidly to it. More formally, we can express these unit vectors in terms of the fixed ones, i, j, k
of the cartesian system:

er = i sinθcos ϕ+ j sinθsin ϕ+k cosθ (206)

eϕ = �i sinϕ+ j cosϕ: (207)

eθ = i cosθcos ϕ+ j cosθsin ϕ�k sinθ: (208)

To prove this we need to find the projections of the unit vectors er;eθ and eϕ onto the x�;y�; and z�axes.
This is not as difficult as it may seem. First refer to Figure 2 or 3 (the first diagram of Figure 4 may also
help your 3-dimensional visualisation) and notice that the two unit vectors er and eθ lie in the plane of the
triangle OPQ; but eϕ is perpendicular to it, so also perpendicular to the line OQ and parallel to the x� y
plane, ie. eϕ is perpendicular to the z�axis. The following proofs are illustrated graphically in Figure 4.
(i) Take the unit vector er: it lies along the direction of the vector r, so that its projection in the z�direction
is just 22 1�cosθ; along the x� and y�axes we first project down onto the x�y plane, giving a vector of
length 1�sinθ pointing along OQ at an angle ϕ with the x�axis; then we see that its projections onto the
x� and y�axes are simply sinθcos ϕ and sinθsinϕ respectively. This can be summarised in the vector
equation:

er = i sinθcos ϕ+ j sinθsin ϕ+k cos θ: (209)

Another way you may know this result is that the vector r has cartesian components,

r = (x;y;z) = (r sin θcos ϕ;r sin θsinϕ;r cos θ); (210)

and dividing by r gives the unit vector along the vector r, which is er.

er � r
r
= (sinθcos ϕ;sinθsin ϕ;cosθ); (211)

(ii) eϕ is rather special because it is perpendicular to the z�axis and it also lies parallel to the x�y plane;
therefore, when projected down onto that plane it still has unit length and lies perpendicular to the line
OQ which is at an angle ϕ with the x�axis. Projection onto the x� and y�axes now gives �sinϕ and
cosϕ respectively,

eϕ =�i sinϕ+ j cos ϕ: (212)

(iii) The most difficult one is eθ. Since it is perpendicular to r its projection on the z�axis is just �sinθ
and it’s projection down onto the x� y plane is cosθ. The latter projection points along OQ since the
original vector eθ is in the plane of the triangle OPQ. Hence the projection onto the x� and y�axes are
cosθcos ϕ and cos θsinϕ respectively,

eθ = i cosθcos ϕ+ j cos θsinϕ�k sinθ: (213)

22The notation � denotes simple multiplication in this section and in Figure 13. It has nothing to do with the vector cross
product; its only purpose is to emphasize that we are projecting unit vectors of length 1.
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These equations allow us to discover how the unit vectors change with the angles by differentiating them,
remembering that the cartesian unit vectors i, j, k are constant:

∂
∂θ

eθ = �i sinθcos ϕ� j sinθsin ϕ�k cos θ

= �er (214)
∂

∂ϕ
eθ = �i cosθsin ϕ+ j cosθcos ϕ

= eϕ cosθ (215)

∂
∂θ

eϕ = 0 (216)

∂
∂ϕ

eϕ = �i cosϕ� j sin ϕ

= �eθ cosθ� er sinθ (217)
∂
∂θ

er = i cos θcosϕ+ j cosθsin ϕ�k sinθ

= eθ (218)
∂

∂ϕ
er = �i sinθsin ϕ+ j sinθcos ϕ

= eϕ sinθ: (219)

Incidentally, since the unit vectors do not depend on the length r of the vector r, ∂ei=∂r = 0: increasing
the length r does not change any unit vector’s direction.

We can also get these geometrically by the sequences illustrated in Figure 13. The simplest is the
variation of er with θ. As shown in Figure 13a, we ask how er changes when θ is increased by dθ:
(i) increasing θ by dθ rotates er by dθ to the new unit vector e0r. The change, der = e0r � er, as given
by the triangle of unit vectors illustrated, is in the direction of +eθ by an amount der =(the length of
er)� dθ = 1� dθ; remember that both er and e0r are unit vectors, it’s only the direction which has
changed. (iii) a similar argument holds for an increase dϕ, but now the change requires projection from
the x� y plane up to the er direction, giving an extra factor of sinθ, Figure 13b.

APPENDIX B: AN EXPRESSION FOR THE HAMILTONIAN .

In the text we saw that the kinetic energy term in the classical Hamiltonian is:

(KE)cl =
p2

2m
=

(pr +p?)2

2m
=

p2
r

2m
+

L2
cl

2mr2 (220)

We now seek the quantum mechanical version of this, cKE, which we will find to have an additional term
2(r:bp)=r2 due to the fact that pr and p? do not commute. The most elegant method I know of finding
the appropriate form for the quantum mechanical bp2 is motivated by looking at the classical KE and
noticing that it involves a term L2

cl . This suggests that we may be able to get somewhere by evaluating
the quantum mechanical bL2 and trying to turn it into something containingbp2. SincebL2 = bL2

x +bL2
y +bL2

z ; (221)

let us work out each term in the sum using the commutation relations:

[xi; bpj] = ih̄δi j; [xi;x j] = 0; and [bpi; bpj] = 0 (222)
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My plan is to get all the x;y;z factors to the left and all the momentum operators to the right:

bL2
x = (ybpz� zbpy)(ybpz� zbpy)

= (ybpz)(ybpz)� (ybpz)(zbpy)� (zbpy)(ybpz)+(zbpy)(zbpy)

In the first and last terms all factors commute and so can be placed in any order; in the second and third
terms there are two factors which don’t commute, but which can be interchanged by using the known
commutation relations. For the second term they are bpzz = zbpz� ih̄; for the last, bpyy = ybpy� ih̄. The terms
can therefore be written with all momentum operators to the right and then rearranged into a suggestive
form:

bL2
x = y2bp2

z � y(zbpz� ih̄)bpy� z(ybpy� ih̄)bpz + z2bp2
y

= y2bp2
z + z2bp2

y �2yzbpzbpy + ih̄(ybpy + zbpz) (223)

Notice how I have rearranged the commuting factors at my convenience. Now the rest of the calculation
is simple because bL2

y and bL2
z have the same structure as bL2

x with an appropriate permutation of the labels

x;y;z. Thus to get bL2
y we make the following replacements in our equation forbL2

x:
y! z;z ! x, giving

bL2
y = (zbpx� xbpz)(zbpx� xbpz)

= z2bp2
x + x2bp2

z �2zxbpx bpz + ih̄(zbpz + xbpx) (224)

and to get bL2
z we make the following replacements in our equation forbL2

x :
y! x;z ! y, giving

bL2
z = (zbpy� ybpz)(zbpy� ybpz)

= x2bp2
y + y2bp2

x �2xybpy bpx + ih̄(xbpx + ybpy) (225)

By adding these expressions and collecting terms together we find

bL2 = (y2 + z2)bp2
x +(x2 + z2)bp2

y +(x2 + y2)bp2
z

�2(xybpx bpy + xzbpx bpz + yzbpybpz)

+2ih̄(xbpx + ybpy + ybpy)

= (x2 + y2 + z2)(bp2
x + bp2

y + bp2
z )

�(x2bp2
x + y2bp2

y + z2bp2
z )

�2(xybpx bpy + xzbpx bpz + yzbpybpz)

+2ih̄(xbpx + ybpy + ybpy)

= r2bp2

�(x2bp2
x + y2bp2

y + z2bp2
z )

�2(xybpx bpy + xzbpx bpz + yzbpybpz)

+2ih̄(r:bp) (226)

where we have added and subtracted terms in the first line to make an r2 = x2 + y2 + z2 factor. Notice
also that the cross terms xy, etc contain all possible pairs. The fact that the second term contains some of
the terms that would occur in (r:bp)2 suggests we look at this operator and see what it is; the calculation
is rather similar to what we have already done:

(r:bp)2 = (xbpx + ybpy + zbpz)(xbpx + ybpy + zbpz)

= xbpxxbpx + ybpyybpy + zbpzzbpz
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+2(xybpx bpy + xzbpx bpz + yzbpybpz)

= x(xbpx� ih̄)bpx + y(ybpy� ih̄)bpy + z(zbpz� ih̄)bpz

+2(xybpx bpy + xzbpx bpz + yzbpybpz)

= (x2bp2
x + y2bp2

y + z2bp2
z )

+2(xybpx bpy + xzbpx bpz + yzbpybpz)

�ih̄(r:bp)
+2(xybpx bpy + xzbpx bpz + yzbpybpz)

�ih̄(r:bp) (227)

In the first three terms we have reordered non-commuting factors using the commutation relations as
before, while the factors in the cross terms xy etc could be reordered because they all commute. This is
very nearly the negative of the terms we found in our expression forbL2, except that the �ih̄ term lacks a
factor of 2; the result is therefore:

bL2 = r2bp2� (r:bp)2 + ih̄(r:bp) (228)

which can be solved for bp2 to give the quantum kinetic energy operator:

cKE =
bp2

2m
=

(r:bp)2

2mr2 � ih̄
(r:bp)
2mr2 +

bL2

2mr2 (229)

=
bp2

r

2m
� ih̄

bpr

mr
+

bL2

2mr2 (230)

The last step above is trickier than might appear: we have used the fact that r:bp = rbpr, but we also had
to be very careful of the non-commuting factors in the first term: 23

(r:bp)2 = (r:bp)(r:bp)
= (rbpr)(rbpr) = r(bprr)bpr

= r(rbpr � ih̄)bpr using [r; pr] =�ih̄[r;
∂
∂r

] = ih̄

= r2 bp2
r � ih̄(r:bp) (231)

The additional term coming from the non-classical non-commuting operators is the one with an explicit
factor of �ih̄, a clear indication of its quantum origins. You can now see why we didn’t spot it at the
classical level: the classical limit corresponds to replacing quantum operators by classical variables and
taking the limit h̄ ! 0, which gives the correct expression for the classical kinetic energy; but going

23In (r:bp)2 there is an r to the right of the momentum operator:

(r:bp)2 = (rbpr)
2 = rbpr(rbpr) 6= r2bp2

r

and bpr does not commute with r. This is quite different from the term r2bp2 occurring in eq. (228) where r2 is to the left of the
momentum operators. Notice also that bp2 and bp2

r are very different as we see by comparing eqs. (229) and (230). If you are
unconvinced, just compare

bp2
r ψ = (�ih̄)2 ∂2ψ

∂r2

with the horribly complicated

bp2 ψ = (�ih̄)2
�

∂2ψ
∂r2 + eθ �

∂
∂θ

�
eθ

∂ψ
∂θ

�
+ eϕ � ∂

∂ϕ

�
eϕ

∂ψ
∂ϕ

��
;

where the angular derivatives also act on the unit vectors to their right giving nontrivial additional terms. Here we have found
a way to avoid getting entangled in such calculations; but we cannot do so in Appendix C, where you can see some of the hard
calculations which would be required.
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the other way, from the classical to the quantum expression we have to take great care: it’s not a simple
matter of merely replacing variables by operators, as we saw in the subtle manipulations in this appendix.

Finally, in spherical polar coordinates we can use the representation bpr =�ih̄∂=∂r to obtain

cKE =
bp2

2m
= � h̄2

2m

�
∂2

∂r2 +
2
r

∂
∂r

�
+

bL2

2mr2 (232)

= � h̄2

2m
1
r2

∂
∂r

�
r2 ∂

∂r

�
+

bL2

2mr2 (233)
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APPENDIX C: AN EXPRESSION FOR bL2 IN SPHERICAL POLARS.

We begin with the angular momentum operator in spherical polar coordinates,

bL =�ih̄

�
eϕ

∂
∂θ
� eθ

1
sinθ

∂
∂ϕ

�
(234)

In squaring this we must remember that the unit vectors eθ and eϕ are not constants, and that the operator
should always be thought of as operating on some function ψ(r;θϕ). Thus,

1
(�ih̄)2

bL2

=

�
eϕ

∂
∂θ
� eθ

1
sinθ

∂
∂ϕ

�
:

�
eϕ

∂ψ
∂θ

� eθ
1

sinθ
∂ψ
∂ϕ

�
= eϕ:

∂
∂θ

�
eϕ

∂ψ
∂θ

�
� eϕ:

∂
∂θ

�
eθ

1
sinθ

∂ψ
∂ϕ

�
�eθ:

1
sinθ

∂
∂ϕ

�
eϕ

∂ψ
∂θ

�
+ eθ:

1
sinθ

∂
∂ϕ

�
eθ

1
sin θ

∂ψ
∂ϕ

�
= (eϕ :eϕ)

∂2ψ
∂θ2 +

�
eϕ :

∂eϕ

∂θ

�
∂ψ
∂θ

� (eϕ:eθ)
∂
∂θ

�
1

sinθ
∂ψ
∂ϕ

�
�
�

eϕ :
∂eθ

∂θ

�
1

sinθ
∂ψ
∂ϕ

�(eθ:eϕ)
1

sinθ
∂2ψ
∂ϕ∂θ

�
�

eθ:
∂eϕ

∂ϕ

�
1

sinθ
∂ψ
∂θ

+(eθ:eθ)
1

sin2 θ
∂2ψ
∂ϕ2 +

�
eθ:

∂eθ

∂ϕ

�
1

sin2 θ
∂ψ
∂ϕ

=
∂2ψ
∂θ2 +

cos θ
sinθ

∂ψ
∂θ

+
1

sin2 θ
∂2ψ
∂ϕ2 (235)

where we have used the results obtained in Appendix A together with orthogonality of the unit vectors
to evaluate the dot products. We can combine the θ derivatives into one term to obtain the standard form:

bL2 = �h̄2
�

1
sinθ

∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�
: (236)

A final comment: by combining the results in Appendix B and C we see that we have computed the del-
squared operator in polar coordinates. Using our expression forbp2 from Appendix B and the expression
above for bL2, we have:

(�ih̄)2∇ 2 = bp2

=
bp2

r

r2 �2ih̄
bpr

r
+
bL2

r2

= �h̄2
�

∂2

∂r2 +
2
r

∂
∂r

�
+
bL2

r2

= �h̄2
�

∂2

∂r2 +
2
r

∂
∂r

+
1

sinθ
∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2

�

ie. ∇ 2 =
∂2

∂r2 +
2
r

∂
∂r

+
1

sinθ
∂
∂θ

�
sinθ

∂
∂θ

�
+

1

sin2 θ
∂2

∂ϕ2 (237)

which is the usual expression quoted in mathematics books. That the angle-dependent terms are simply
related to the square of the orbital angular momentum operator cannot of course be deduced from these
texts.
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Figure 6. The vector model of angular momentum, depicting the quasi-classical orbital angular mo-
mentum vector as having length h̄

p
`(`+1) for an eigenstate of angular momentum, and its 2`+ 1

allowed projections on the z�axis. The vector’s length is the square root of the eigenvalue ofbJ2 and
the projections are the (quantised) eigenvalues, h̄m, of bJz with m = :� `;`+ 1; : : : `. These are the
only possible outcomes of a measurement of these variables for an eigenstate. In other words, for an
eigenstate ψE`m(r) = RE`(r)Y`m(θ;ϕ), an ensemble measurement would yield the expectation valuesq
hbJ2i=

q
h̄2`(`+1), and hbJzi=h̄m with zero uncertainty, ∆J2 = 0 and ∆Jz = 0.

The diagrams show various ways of illustrating the quantum mechanics of orbital angular momentum,
emphasising the fact that the x� and y�components are not determined.

Figure 8a. Polar plots of the the first few spherical harmonics.
Here we show projections of the probability distributions

jY`m(θ;ϕ)j2 = (2π)�1jΘ`m(ϕ)j2 = N2
`mjPjmj` (cos θ)j2

onto the z� y plane for ` = 0;1;2;3. The distance from the origin of points on the curve represents this
probability as indicated in the ` = 0 plot. Since the probability density is independent of the azimuthal
angle ϕ, the actual distribution is obtained by rotating the plots about the z�axis. Figure 8b shows the
resulting 3-dimensional shapes (actually, their square root, jỲmj) for ` = 0;1;2 obtained by rotating the
plots of Figure 8a about the z-axis.

Figure 8b. The square root of the probability distributions, jỲm(θ;ϕ)j for ` = 0;1;2. The distance
from the origin of a point on the 3-dimensional surface represents jỲm(θ;ϕ)j, where (θ;ϕ) represents the
direction of the vector drawn from the origin to that point.

Figure 8.

Figure 8.

Figure 8.

Figure 8.

(238)
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36


