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Plank: Quantization

. 1900: Plank introduced the concept that

electromagnetic radiation is emitted and absorbed as
guanta of energy.

E = hv Recall:
—  Bw h=h/2m
h = 1.054571628(53) x 107 %*Js

= 6.58211899(16) x 10~ **MeV's
= 1natural units

— Based on theoretical work by Stefan and Boltzmann on

Blackbody radiation, and detailed experimental work (see
note set 1).

Refs. [1] B&J Chapter 1
[2] Feynman Lectures, Volume lll. Chapter 2
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Einstein: Photoelectric effect

* 1905: The relativistic behaviour led to mass-energy
equivalence via

E = \/p202 + mgc

* The photoelectric effect could be explained using
this, where (as photons are massless)

E = pc

Refs. [1] B&J Chapter 1



Wave-particle duality

e 1923: A step forward in comprehension
— Particles can behave as waves
— Waves can behave as particles

* There is an intrinsic scale to the problem defined by the energy
one is working at.
h

p:X

= hk k = wave number

— So for all particles one finds
E = \/p202 + m3ct = hw
— e.g. a plane wave can be expressed as
qJ(ZC,t) _ ez’(k:a:—wt) _ ei(pw—Et)/h

Refs. [1] B&J Chapter 1
[2] Feynman Lectures, Volume lll. Chapter 2
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The Wave Eqn. TDSE/TISE

* From energy considerations:

= KE+ PE
p?
= -+ V(z,t)
* From this one deduces:
K2 020 (x,1) oV (x,t)
_ ! V(z, )V (z,t) = ih—22
2m  Ox2 TVi@ e t) =i ot

* |f the potential is time-independent, then we separate out the
wave function into space and time parts:

T Ly i) = Bo)
df(ty  iE
KA

* where
Refs. [1] B&J Chapter 3 \If(ilf, t) = ¢($)f(t) 6
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Some observations

The Hamiltonian operator is H:
Hip(x) = Ey(x)

The solution Y(x) is the eigenfunction of A with energy
eigenvalue E.

E is real and for the TISE H is real, so the Pe(x) are real.
— Eigenvalues of physical observables are real.

— This does not hold for the TDSE, as the energy is real, but
time-dependence is complex.
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Superposition principle

In general the wavefunction is given by

oo

U(a,t) = 3 cbi(o, 1)

1=1
This is a sum over all possible independent solutions
of the wave equation.

The (in general complex) coefficients ¢, must satisfy
the overall normalisation condition dictated by the
Born interpretation (next slide)
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Born interpretation

* The wave function is a probability amplitude. i.e.
2
P = |V (x,t)|"dx
— The probability that a measurement at some time t of the
particle position x will yield a result between x and x+dx.

— In 3D this becomes

P = |U(r,t)|*d%z
Pz = dV = dadydz
* The probability of finding the particle anywhere
given a measurement at time t should be 1.

— So we have our normalisation condition:

/ W (r, t)]2d3x =1

University of London

Question

* |f | have a wave-function given by
U = Ae'?

— What is this (basic terms — what type of quantity)?
— What does it represent?

— What is the probability of finding the particle at a given
point ¢?

— How does the probability vary with ¢?



TISE
* Revisit the TISE: V(x,t) = V(x), so
12 0*Y(x)

2m  Ox?

V() = Ber) LW o

and

U(z,t) = v(x)f(t)

J(x) depends on the potential, whereas only the RHS is
time-dependent. We can solve for f(t)

f(t) _ Ae—z’Et/h

SO )
U(z,t) = (x)e EH/N
The normalisation constant has been
absorbed into Y(x), and we can now
Refs. [1] B&J Chapter 3 use this solution in the SE. 1
&
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TISE
®* SO
h 0% (x)
_ Vix)y(x) = Ev(x
o+ V(@)(a) = B(a)

can be written as

Hip(z) = Ey()

Hamiltonian

Energy eigen-value E corresponding
Wavefunction to the state r¢(x)

E is real, so Y is real

but W(x,t) = Y, /M is complex

Refs. [1] B&J Chapter 3 5
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Consequences of the Born interpretation

The wavefunction encodes everything we are able to
determine about a state.

The measurement of a quantity (e.g. position) is
probabilistic, and not a deterministic one.

We can prepare a state W(x,t), and subsequently
make a measurement of the position at some time t.

— The wave function tells is the probability of observing the
state between x and x+dx is given by

P = |¥(z,t)]*dz

\Q Queen Mary
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Consequences of the Born interpretation

We can prepare an ensemble of states W(x,t), and
subsequently measure them.

From the ensemble we can compute an expectation value in
the normal way

oo

(z) = / 2|, 1) 2da

We normally write this as

oo

(x) = / U (x,t)x¥(z, t)dx

— 0o

oo

= / U*rWUdx

— 0o



* This is the ensemble (or Copenhagen) interpretation of QM.

* We can compute a spread on x given by Ax, where

Az = /(2?) — (z)?

* We know <x> (previous slide), and

o0

(z?) = /\If*a:Q\I!dx

— o0

* so Ax s calculable.

15
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Two slit experiment revisited

* Prepare an ensemble of states

1
U= —(I; + 0y)

where \/5

1 %k %k
wpF = 5(\‘1’1|2+!‘1’2\2+‘1’1‘1’2+‘1’1‘1’2)
1 2 2 *
= 5(\‘1’1\ + [Wo|” 4 2Re[WTW5))

Which slit did a particle go through?

Can't tell as we didn't measure that.
The wavefunction W represents an ENSEMBLE of states with equal
probability amplitude that a given particle is described by either
W, or by W,.

Interference (W *W,, i#j) is the key feature here. P
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Boundary conditions

4.

Physical states are localised, so

lim ¥(x) =0

r—+o00

The WF W must be square integrable (have to be able to normalise

it).

|W |2 is a probability density function, so it has to be single valued.
1. But the wave function W does not have to satisfy this.

The wave function has to be continuous everywhere (follows point

3).

The derivative dW/dx has to be continuous everywhere so that
the second derivative is finite in the Hamiltonian.

1. Exceptionis the

infinite square well example.

17
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nfinite Square Well

* V(x)is independent of time, so

R 9(a)

U(z,t) = (x)e H/N

+V(2)y(z) = Ep(x)

infinite potential

infinite potential

18
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Infinite Square Well

* V(x) is independent of time, so
U(w,t) = g(x)eFH

ST L wi(a) = o) "
* Notethat: ¢(x) = 0 whenz=4+L/2
Y(x) = 0 when |z| > L/2
V() = 0 when |z| < L/2

* So Eqg. (1) gives

d2e 2mkE
i —ky(x), where k = 4/ —

* Solutions take the form
Y(z) = Acos(kx) + Bsin(kx)
* 0Odd and even parts to the probability amplitude.

19
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Infinite Square Well

* Solutions are given by
T2 h?

En = n? )
" omL?

o) =/ [oos () o (°T7)

where n =1,2,3,4, ...

non-vanishing for odd values of n non-vanishing for even values of n
(i.e. ignore term for even n) (i.e. ignore term for odd n)

20
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Infinite Square Well

* n=1: Ground state

Wave function (un-normalised) PDF (un-normalised)
2 = 22
= 14 = LHE
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o.si 12
F e
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C 04—
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C 02—
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Infinite Square Well

 n=2: First excited state

Wave function (un-normalised) PDF (un-normalised)

22
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Infinite Square Well

* n=3: Second excited state

Wave function (un-normalised) PDF (un-normalised)
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Infinite Square Well
* n=4:Third Excited state

Wave function (un-normalised) PDF (un-normalised)
=220
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[2 . [(Amx\ _, 167%h?
U(x,t) = 7 sin (T) e 1Pt/h and By = omL?

24
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Question
* This is a Dalitz plot. What do you think is giving this
structure?
W Preliminary
:? B sy ]
24 ﬁz
é‘5'1.5— ]
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Just like the finite square well potential, but here the quantum degree of
freedom is something called spin. We'll come back to that later.

See http://superweak.wordpress.com/2006/07/31/dalitz-plots/, and for a
more detailed description refer to the PDG section on Kinematics.

25
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Aside

The K*(892) and ¢(1020) particles are JP = 1",
— These are vector particles. Here we have

$(1020) — KTK~
K*(892) — Ktn~

The spin-one (J=1) quantum number assignment is analogous
to the first excited state (n=2) of the ISW problem.

We will see later that P=—1 indicates that the wave-function is
also anti-symmetric (like the n=2 ISW solution).

See PDG Kinematics review for more information on 3 body
decays.

26
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Momentum

. Consider a de Broglie wave as an idealised example:
\I/(ZC, t) _ ei(kx—wt) _ ei(px—Et)/h
* Normalisation of the WF is a problem, however we can
compute a wave packet consisting of an infinite sum of

possible de Broglie waves to obtain a momentum wave
function ®(p,t), where

1 o
(e, 1) = / $(p)e PP F0 /Ry

1
\V21h

* and an inverse Fourier Transform yields

U(z,t) =

/ D(p, t)eP*/ M dp

o0

1 .
/ U (x,t)e”Pe/hdy

o0
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Momentum

B Interpret |®|2dp as the probability of observing a particle
with momentum between p and dp.

* |t follows (see Appendix of Note Set 1) that
o

() = / & (p,1) B (p, ) dp

— OO

(p) = 7\11*(56,15) <—ih§) U(x,t)dz

X
— o0
* From this interpretation we can see that
0
~_ 9
P ’ ox

* where we explicitly denote this as an operator (like the
Hamiltonian earlier)



Operators

* Dynamical variables in QM are obtained by replacing their
classical momentum variables with the QM operators.

- eg A(x,p) — A = A(z,p)
— SO .
0
5— _in 2
b= r "o
H — H
L p — L= rXp
so L = thr x V
— Hence the SE equation becomes:
oV
HYU = ih—
ot

29

Heisenberg's Uncertainty Principle

Stems from commutation relations (c.f. the non-commutability
of matrices).

The commutator of two operators is given by
[A,B] = AB — BA

e.g. differentiation operators do not commute

[377]/7\:13] =1h
¢ as
o, Fuld = (2Fs - Fun)
N 0
= —ih Q:%w(x)—%{xﬁb(x)}]

30



Heisenberg's Uncertainty Principle

A general argument can be used to show that for any two |

operators

AAAB > % (4. BY)

where AA and AB are the respective uncertainties on an

ensemble measurement of the two observables on a
system in a given quantum state.

For momentum and space we find

ArAp, > g

i.e. it is not possible to simultaneously know x and p, to

infinite precision.
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Energy eigenstates
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Consider solutions to the TISE|i.e. V(x,t) = V(x)

— e.g. the infinite square well (reminder of the ground state)

Wave function (un-normalised) PDF (un-normalised)

s 22p
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Energy eigenstates

Solutions have the form:

\IJE(ZC,t)

hence

Up(z,t) =

— wE (x)e—iEt/h

Vi (x)e T

So the probability is glven by
UL (z, ) VE(x,t)

‘\IJE<xat)|2

i.e. probability is independent of time...

P(z,t)

[Vp(z)|”

P(z)

So the state W, should be stationary.

‘:;_ Queen Mary
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Energy eigenstates

33

For solutions of the TISE, the time dependence falls out of the

expectation value computation.

— See notes for general discussion.

1) let's consider momentum: p =

So the complex conjugate of this is

[m/w 9 () ]

(7))

0

_Zﬁ_

—+00
5 =i [ i@

ih / wn(:z:)2

—(P)

n

*

ox

Yy (x)dx

<p>=0is the only valid
solution as the

expectation value of an

observable has to be a
real quantity.

34



Energy eigenstates

2) now consider energy expectation values and the Hamiltonian
“+o0

(B = / U (2, £) FT0, (2, £)da

400
— [ vi@ b
= E,
Energy is quantised so we would anticipate that the uncertainty
on E would be zero, where

A~

AE = \/(B2) — (A)?

This is left as an exercise for you to show.

35
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Orthogonality and Orthonormality

It can be shown (see note set 1) that
+ o0 400

/xp;ffm/jdxz /(ﬁ\l}i)*\lljdx

— O — o0
which can be used to show that the energy eigenstates are
orthogonal.

+o0 +o0
Hy = /\Ifjﬁmjdszj / U0, de "
1
+00 +oo
So (1) —(2) gives +00

(E; — E) / U0 de =0

— o0
36



Orthogonality and Orthonormality
* Case 1:i=j o

— E-E*=0 given by the requirement that the energy eigen
values must be real.

— The integral is simply the familiar normalisation condition

0. @)

— 0
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Orthogonality and Orthonormality

e Case 2:i#j to

— 00

— E;-E;*#0 given non-degenerate solutions.

— Hence the integral must be zero!

/\Ilj‘lfjdx:(),fori#j

— Hence the energy eigenstates are orthogonal.



Orthogonality and Orthonormality

* We can encode these two scenarios into a single
expression: the orthonormality condition

@)

— O

 where the RHS is the Kronecker delta:

(57;]' = 1fOI'Z:]
= 0Ofori+#y

39
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An admixture of states: example

* Consider a cold gas of hydrogen atoms in their ground state.

* If the gas is excited by a laser such that there is a 50/50 probability that an
atom moves from the ground state (n=1) to the first excited state (n=2),

then
1
1 —i —i
_ ﬁ [¢1(5€)6 Elt/h—l—@/)g(x)e Es>t/h
* The time-dependence does not vanish from the probability density
function:

U (z, )V (x,t) = [0 (2, )] + [Wa(z, t)|* + Ui (z,t) Ua(, t) + Ui (z, ) Uy (2,1)]

[|\I/1(x,t)|2 + Wy (x,t)|? 4+ 2Re {\If’{(x,t)\lfg(x,t)}}

NI~ N~ N

Wy (2, )+ [Wa, £)] + 200 (2)ha () cos <E2 - B tﬂ

40



An admixture of states: example

* The angular frequency depends on the energy difference
Es — Eq
h

* But the normalisation condition is necessarily constant:

w12 =

oo

/ ¥|?de =1

— o0

41
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An admixture of states: example

* Consider the energy expectation value:

(H) = / U*HUdz

— o0

(o.]

1 N N
- 5/\1!*1‘H\111+\11§H\112d3:

— 00

Ey + Esy
2
* And the uncertainty on E is given by

AE = \/(B2) — (A)?

* |t can be shown (left as an exercise) that:
Es — E4

AFE =
2

42
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An admixture of states: example

In general one can consider the case where the WF is
U = CZ'\Ifq;
)

e.g. for 2 components
v = 61\111 + 62\112
where normalisation requires that

er]? + Jeof* = 1
and the expectation values are modified accordingly.
— This formalism is applicable to a number of physical situations
* Stern Gerlach experiment
* Neutral K, D, B4 and B, mixing
* neutrino oscillation
* Quantum information algorithms
* etc.
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The measurement postulate

The most general solution for the TDSE is a linear combination of all
possible energy eigenfunctions:

U = ch\pn

n

— E cnwne_iEnt/h

n

where the coefficients are given by
400

Cp = / \II(JZ, 0)770;1 (ZIZ)dSIJ‘ (See notes for proof)

— 0

What do the c, represent?

— Consider the energy expectation value <E> to develop an insight on
this question.
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The measurement postulate

(H) = / U*HUdx

— 00

= XY e BB / g, Hppda
= DY ChenBye!En B / U nde

— o0
= Z Z c:fnannei(Em_E”)t/%mn ((\é‘d

QN
= Y leal’En <&
n

We interpret |c,|? as the probability of observing the system
in state n, with energy E_ subsequent to a measurement. .

‘«;__ Queen Mary
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The measurement postulate

An ensemble state U = E cn, ¥V
prepared as W

The wave function collapses from the
ensemble of possible states into a
definite state.

The collapse is triggered by the act of
making a measurement.

A specific state corresponding
to quantum number n, with \Ifn
energy E_, and eigenstate W

46
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Dirac notation

* We will see a simplified notation during this course

/ U Udr = (0|0
all space

/ U*OVdz = (¥|O|D)
all space

* This is known as the Dirac notation (or Dirac braket
notation). Here

bra = (V]
ket = |T)
which is a useful shorthand for the integral equations.

47
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The measurement postulate

=

.
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An ensemble state Y = E cn Vo,
prepared as W n

The wave function collapses from the
ensemble of possible states into a
definite state.

The collapse is triggered by the act of
making a measurement.

Transition or wave
function collapse from
initial to final states

&
<

A specific state corresponding
to quantum number n, with \Ifn
energy E_, and eigenstate W
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