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SECTION A. Attempt answers to all questions.

A1

(a) Write down Bayes theorem and explain each term.

P (B|A) =
P (A|B)P (B)

P (A)
, (1)

where A = data, B = theory/hypothesis, and

P (A) =
∑
i

P (A|Bi)P (Bi). (2)

The terms have the following meanings: P (B|A) is the posterior probability of the
theory given the data, P (A|Bi) is the probability of the data given the theory Bi,
P (B) is the prior, and P (A) is the total probability of the data based on the theory.
[4 marks in total for this information].

(b) Using Bayes theorem determine the probability that it will rain tomorrow given the
following: The weather forecast tomorrow is for rain. 70% of the time when it rains,
the rain has been correctly forecast. When there is no rain forecast, it rains 5% of
the time, and on average it rains 100 days of the year.

P (rain|rain forecast) = 0.7, (3)

P (rain|no rain forecast) = 0.05, (4)

P (rain) = 100/365 = 0.274, (5)

P (no rain) = 265/365 = 0.726, (6)

so

P (rain forecast|rain) =
0.7× 0.274

0.7× 0.274 + 0.05× 0.726
, (7)

= 0.841 (8)

[4 marks in total for this information].

(c) Compare you result with one assuming that the priors for it to rain or not are equal.
As above, but with P (rain) = P (no rain) = 0.5, hence

P (rain forecast|rain) =
0.7× 0.5

0.7× 0.5 + 0.05× 0.5
, (9)

= 0.933 (10)

so either way round, we expect it to rain.
[2 marks in total for this information].

[10]
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A2

(a) Write down the equation for the arithmetic average of a sample of data.

x =
1

N

N∑
i=1

xi. (11)

[2 marks in total for this information].

(b) Write down the equation for the standard deviation of a sample of data and explain
the significance of the Bessel correction factor.

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2. (12)

The Bessel correction factor N
N−1

used to get this form of the standard deviation is
introduced in order for σx to be unbiased for small N .
[2 marks in total for this information].

(c) Write down the equation for the skew γ of a sample of data, and illustrate this with
a sketch of a distribution skewed to the left.

γ =
1

Nσ3

N∑
i=1

(xi − x)3. (13)

Figure 1 shows an example of a distribution that is skewed to the left.
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Figure 1: A distribution that is skewed to the left.

[2 marks in total for this information].
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(d) Write down the equations for the covariance and Pearsons correlation coefficient for
two variables x and y.

σxy =
1

N

N∑
i=1

(xi − x)(yi − y), (14)

ρxy =
σxy
σxσy

. (15)

[2 marks in total for this information].

(e) Compute the arithmetic average, variance, standard deviation, and skew of the data
set Ω(x) = {1.0, 2.5, 3.0, 4.0, 4.5, 6.0}. Thus

x (x− x) (x− x)2 (x− x)3

1.0 -2.5 6.25 -15.625
2.5 -1.0 1.00 -1.000
3.0 -0.5 0.25 -0.125
4.0 0.5 0.25 0.125
4.5 1.0 1.00 1.000
6.0 2.5 6.25 15.625

x = 3.5 (16)

σ2
x = 3.0 (17)

σx = 1.73 (18)

γ = 0.0 (19)

If no bessel correction factor was used for the variance, then deduct 1/2 a mark (in
that case one would have calculated σ2

x = 2.5 and σx = 1.58.
[2 marks in total for this information].

[10]
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A3

(a) What percentage of results would one expect to obtain within ±3σ of the mean
value of an observable when making a set of measurements?
One would expect 99.73% of results to lie within 3σ.
[1 mark in total for this information].

(b) Write down the equation for the binomial error on an efficiency, explaining the
meaning of any parameters included.

σε =

√
ε(1− ε)
N

. (20)

where ε is the efficiency (number of interesting events divided by N), and N is the
total number of events.
[3 marks in total for this information].

(c) What benefit is there from performing a blind analysis of data?

• The analysis will provide an objective result, i.e. there should be no experimeter
bias.

[1 mark in total for this information].

(d) Given that f = f(x, y), where x and y are correlated, write down the equation
relating the variance on f , σ2

f , in terms of on σx and σy and the partial derivatives
of f . Also express this in matrix form identifying the significance of the off-diagonal
terms.
The normal form of σ2

f is

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
σxy. (21)

In matrix form this is

σ2
f = ([x− x], [y − y])


(
∂f
∂x

)2 ∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y

(
∂f
∂y

)2

( x− x
y − y

)
(22)

and the off-diagonal terms are the covariance terms between x and y.
[5 marks in total for this information: 2 each for the variance on f in
matrix and normal form, and one mark for an explanation of the off-
diagonal terms].

[10]
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A4

(a) When might it be useful to perform a fit to data.

• Useful to fit data in order to extract the values of one or more parameters (with
uncertainties).

• Useful to obtain a multi-dimensional confidence interval.

• Useful to average results that are correlated

[2 marks in total for this information: 1 for each of the above]

(b) Write down the equation for a χ2 sum given a data set Ω(x) and a model for the
data θ(x).

χ2 =
N∑
i=1

[xi − θ(xi)]2

σ2
i

. (23)

where σi is the error on the datum xi.
[2 marks in total for this information]

(c) Explain the term “number of degrees of freedom” and how this relates to the number
of data N in a data set.
The number of degrees of freedom is the total number of data minus the total number
of constraints on the data. If there are no external constraints imposed, then the
total number of data constitutes the only constraint on the problem, thus ν = N−1.
[2 marks in total for this information]

(d) Write down the equation for a likelihood used to discriminate between a signal
component described by Psig and a background component described by Pbg.

L =
N∏
i=1

Li, (24)

Li = fsigPsig + fbgPbg. (25)

Here fsig and fbg are the fractions of signal and background components, respectively,
and we require fsig + fbg = 1. [2 marks in total for this information]

(e) What is usually minimised in a maximum-likelihood fit?

− lnL = −
N∑
i=1

lnLi, (26)

(27)

[2 marks in total for this information]

[10]
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A5

(a) Describe a Bayesian classifier.
Given that P (B|A) ∝ P (A|B)P (B), for some hypothesis B and data A, one can
compute P (Bi|A) or ratios of P (A|Bi)P (Bi). The event is then assigned classification
of the most probable hypothesis based on these ratios or posterior probabilities.
[2 marks in total for this information]

(b) Write down the classification algorithm corresponding to Fisher’s linear discriminant.

F =
m∑
i=1

αixi + β, (28)

α ∝ W−1(µA − µB), (29)

where the αi are weight coefficients, β is an arbitrary offset, W is the sum of covari-
ances for samples A and B, and µi is the vector of mean values of sample A or B.
[2 marks in total for this information]

(c) Describe a decision tree classifier to distinguish between two categories of event.
The decision tree is a collection of linked nodes, where at each node one performs

Root Node

Ω
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A-L
ike E

ven
ts B-Like Events

Figure 2: Schematic of a decision tree to classify two types of event A and B.

a cut based optimisation to separate different classifications of events. Some or all
of the discriminating variables may be used at each node of the tree. Starting from
the ROOT node, one can work down through several layers of categorisation steps
(See Figure 2).
[2 marks in total for this information]

(d) Given several classifiers of data optimised to distinguish between two categories (A
and B), sketch the distribution of the efficiency of A versus the efficiency of B, and
note how one would select the most performant classifier using this plot.

See Figure 3. The best classifier is the one with the efficiency curve that passes
closest to the bottom right (signal efficiency high, background efficiency low).
[2 marks in total for this information]
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Figure 3: Deciding which classifier is better... where A = signal, B = background.

(e) When might one decide not to use the most performant classifier as selected by the
method illustrated in part (d).
Might not use the most performant classifier identified in the previous part of this
question when that is

• Difficult to use in subsequent analysis (e.g. hard to define a sensible PDF to use
in a fit).

• not understood

• not validated

[2 marks in total for this information, 1 mark for each of the points]

[10]
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SECTION B. Answer two of the three questions in this section.

B1

a) Describe the procees of testing a null hypothesis, and subsequently placing a confi-
dence level on the conclusions drawn.
In order to test a null hypothesis H0 against some data, one has to

• Clearly define H0.

• Thus define H1 = H0.

• Define the confidence level that we will test the hypothesis against, i.e. what
level of false negatives and false positives is acceptible for the problem.

• Make the comparison.

• If the data are found to agree with the hypothesis, then the CL corresponding to
that level of agreement can be quoted. Otherwise the level at which H0 disagrees
with the data can be reported.

[5 marks in total for this information, 1 mark for each of the points] [5]

b) A test for an infection returns a positive result 98% of the time for someone with an
infection. The same test reports a positive result 0.05% of the time for patients who
are not infected. If, 0.01% of the population are infected, what is the probability
that someone with a positive test result is actually infected? Is this a good test?

P (positive test result|infected) = 0.98, (30)

P (positive test result|healthy) = 0.0005, (31)

P (infected) = 0.0001, (32)

P (healthy) = 0.9999, (33)

(34)

so

P (infected|positive test result) =
0.98× 0.0001

0.98× 0.0001 + 0.0005× 0.9999
, (35)

= 0.164. (36)

Therefore this particular test is not particularly good.
[5 marks in total for this information [5]
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c) Describe how you would uses Bayes theorem to compare two theoretical hypotheses
and how one would interpret the results obtained.
Note that P (Bi|A) ∝ P (A|Bi)P (Bi) for a given hypothesis Bi and data A. Therefore
one can compare the posterior probabilities P (Bi|A) or the ratios of P (A|Bi)P (Bi) if
one can not determine the normalisation constants. For example, given two scenarios
H0 and H1, the ratio is

R =
P (H0|data)

P (H1|data)
(37)

=
P (data|H0)P (H0)

P (data|H1)P (H1)
. (38)

Thus if

• R > 1, H0 is preferred.

• R < 1, H1 is preferred.

• R ' 1, insufficient information exists to decide which hypothesis is preferred.

[5 marks in total for this information [5]

d) THIS PART OF THE QUESTION IS UNSEEN
As the result of a survey, you have measured the baseline between two mountain
summits A and B to be 2 km, and from both of those summits you have determined
the angles α and β between the baseline and a third summit C. Outline how you
would use Bayes theorem to determine the location of the third summit relative to
A, and illustrate how one would determine the both the most probable value of the
location and the confidence interval associated with a 1σ statistical uncertainty.
Starting from Bayes theorem, where

P (H0|data) =
P (data|H0)P (H0)

P (data)
(39)

for some given point in space H0 = (x, y) (see Figure 4), we can compute a posterior
probability for α using

P (α̂|α) =
P (α|α̂)P (α̂)

P (α)
, (40)

where

α̂ = arctan(y/x), (41)

and similarly for β we can obtain the posterior probability

P (β̂|β) =
P (β|β̂)P (β̂)

P (β)
, (42)

where

β̂ = arctan(y/[2− x]), (43)

where the probabilities P (α|α̂) and P (β|β̂) are Gaussian distributions with means
and uncertainties corresponding to the measured values and errors of α and β, re-
spectively. As we are otherwise ignorant, we can assume that we have uniform priors.
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Figure 4: (left) a schematic of the problem indicating the values of x and y. Here L = 2 km.
(right) an illustration of the posterior probability obtained, and the corresponding 1σ interval.

The total probability for any given location (x, y) for the apex of the triangle is the
product of the two posteriror probabilities: PC = P (α̂|α)P (β̂|β). Given this two
dimensional probability (in terms of (α̂, β̂) or (x, y) space, we can integrate out the
posterior probability for x or y.

The most probable value of the coordinate is the seed with which we construct
the interval about. Starting from this point, one integrates out (integrating over
contours of equal probability), until one obtains the desired coverage. For example
see Figure 4.

[10]

[TOTAL FOR B1 = 25]
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B2

a) Determine the change in − lnL from the best fit value that corresponds to a 1σ
Gaussian uncertainty.

Li = Pi, (44)

L =
∏
i

Li, (45)

where Pi = 1/(σ
√

2π) exp[−(x− µ)2/2σ2]. The − lnL is minimised, so

− lnL =
∑
i

− ln

[
1

σ
√

2π

]
+

(x− µ)2

2σ2
, (46)

• The first term corresponds to the value of − lnL at the minimum, L0, when
x = µ.

• When x− µ corresponds to ±1σ, then the second term is 1/2.

Thus a change of 1/2 from the best fit value L0 in a maximum-likelihood fit corre-
sponds to a 1σ Gaussian uncertainty.

[5]

b) Given the measurements x1 = 1.2 ± 0.3, and x2 = 1.8 ± 0.3, approximate the mean
value and uncertainty on the average value of x obtained by performing a χ2 scan
from 1.0 to 2.0 in steps of 0.2. Compare the results you’ve obtained with those from
a weighted average.

x χ2
1 χ2

2 χ2
TOT

1.0 0.44 7.11 7.56
1.2 0.00 4.00 4.00
1.4 0.44 1.78 2.22
1.6 1.78 0.44 2.22
1.8 4.00 0.00 4.00
2.0 7.11 0.44 7.56

(1.5) (1.00) (1.00) (2.00)

So the mean value of these two measurements is x = 1.5. If one sketches the points
shown, then a reasonable estiamte of the error obtained from that curve, is when
the χ2 changes by one from the minimum. This is about ±0.2.

If one performs a crosscheck by computing a weighted average, where this is given
by

x± σx =
x1/σ

2
1 + x2/σ

2
2

1/σ2
2 + 1/σ2

2

±
(
1/σ2

2 + 1/σ2
2

)−1/2
, (47)

=
σ2

2x1 + σ2
1x2

σ2
1 + σ2

2

±
(

σ2
1σ

2
2

σ2
1 + σ2

2

)1/2

. (48)

one finds that x = 1.5± 0.21.

The estimate from the χ2 scan is in good agreement with this computation of
weighted average.

[10]



c) THIS PART OF THE QUESTION IS UNSEEN
Assuming that y = ax2 + b, use the method of least squares to derive the values of
coefficients a and b. Assume that the uncertainties on each of the data points to be
used by the least squares method are all the same.

χ2 =
N∑
i=1

[
yi − ax2

i − b
σi

]2

(49)

=
1

σ2

N∑
i=1

[
yi − ax2

i − b
]2

(50)

=
1

σ2

N∑
i=1

[
y2
i + a2x4

i + b2 − 2ayix
2
i − 2byi + 2abx2

i

]
(51)

=
N

σ2

[
y2 + a2x4 + b2 − 2ayx2 − 2by + 2abx2

]
(52)

(53)

The optimal solution exists for

∂χ2

∂a
= 0, (54)

∂χ2

∂b
= 0, (55)

so

∂χ2

∂a
=

N

σ2

[
2ax4 − 2yx2 + 2bx2

]
, (56)

∂χ2

∂b
=

N

σ2

[
2b− 2y + 2ax2

]
, (57)

hence

a =
yx2 − yx2

x4 − (x2)2
(58)

b = y − ax2. (59)

[10]

[TOTAL FOR B2 = 25]
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B3

a) Compute the coefficients of a Fisher discriminant to optimally separate samples of
data A and B given the means and covariance matrices below.

µA =

(
1.0
2.0

)
, (60)

and

σA =

(
1 2
2 2

)
,

for sample A, and:

µB =

(
0.0
1.0

)
, (61)

and

σB =

(
1 1
1 2

)
,

for sample B.

∆µ = µA − µB (62)

=

(
1.0
1.0

)
(63)

detW = −1 as.

W =

(
2 3
3 4

)
,

and

W−1 =

(
−4 3
3 −2

)
,

As α ∝ W−1∆µ, we find

α ∝
(
−1.0
1.0

)
(64)

[10]
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b) Describe a perceptron, and give three possible forms for the activation function.

• Figure 5 illustrates a perceptron, which is an analogy of a neuron. Taking n
inputs, processing these inputs via an activation function, and providing some
output.

y Output

1x

2x

3x

.

.

.

nx

Figure 5: A perceptron.

Possible activation functions include

• Binary threshold: yi = 1 if w.x > 0, else yi = 0.

• Sigmoid (or Logistic): yi = 1/(ew.x+β + 1)

• Radial: yi = e−w.x

• hyperbolic tan: yi = tanh(w.x)

[5]

c) Describe how to construct a Multi-layer perceptron (MLP). Note the configuration
of a simple MLP, and how the weights can be determined and validated.
A multi-layer perceptron is a neural network with one or more hidden layers of
perceptrons acting as nodes within the net. This is shown schematically in Fig 6.

• A training sample is required with x variables for each event ei to be used in
the determination of the weights w. In addition the true target value ti for each
event must be known as this is a supervised learning algorithm.

• Then we can define a mis-classification error εi for an event

εi =
1

2
(yi − ti)2 (65)

where the yi is the activation function output (assumes this varies between 0
and 1). The total error on the training sample is therefore given by

E =
∑
i

εi =
∑
i

1

2
(yi − ti)2 (66)

where the sum is over all data.
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Figure 6: An MLP with one hidden layer.

• Now we can guess an intial set of weights, and based on this, use the error to
determine the next iteration of weights via

wj+1 = wj + ∆w, (67)

∆w = −αdE
dw

. (68)

where α is a small positive learning rate. The logic behind this is that in using
this definition of ∆w, the j + ith set of weights will have an error less than the
jth set as:

∆E = ∆w
dE

dw
, (69)

= −α
(
dE

dw

)2

(70)

(71)

• The total error for the network is the sum of errors for the input, hidden and
output layers of notes, and this is minimised through training.

• Having determined the error rate on a training sample, one should process a
validation sample of events with the same weights as the training sample, in
order to determine a differnece in errors between training and validation sets.
This should be small if the network configuration is not overtrainined, and the
total error difference can be used as a criterion to stop the training process.

2 points for each of these issues [10]

[TOTAL FOR B3 = 25]
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