Nuclear Physics and Astrophysics

PHY-302

Dr. E. Rizvi

Lecture 13 - Gamma Radiation

Material For This Lecture

Gamma decay:

Definition

Quantum interpretation

Uses of gamma spectroscopy

Turn to γ decay - last of three radioactive decay modes opens field of discussion to nuclear spectroscopy Then move on to applications of what we have learned!

- \blacktriangleright Many α and β decays leave daughter in excited state
- Often decay to ground state is via gamma emission high energy photon
- Study of gamma emission → deduce spin / parity of excited states
- Photon energy ~ 0.1 10 MeV reflects energy difference of nuclear states wavelengths ~ 100 - 10³ fm 10⁶ shorter than visible light $E_{\gamma} = hc/\lambda$ hc = 1239 MeV fm
- > Many details of nuclear structure are revealed through knowledge of excited states
- > Thus gamma ray emission standard tool of nuclear spectroscopy
- > Also, photons attenuated less in matter than α and β particles

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 13

Consider decay of excited nucleus: $N^* \rightarrow N + \gamma$ From E_i to E_f : $E_i = E_f + E_\gamma + T_R$ T_R = non relativistic recoil of nucleus = $P_R^2/2m$ $0 = \mathbf{P_R} + \mathbf{P_\gamma}$ If $\Delta E = E_i - E_f$ and $E_\gamma = cp_\gamma$

$$\Delta E = E_{\gamma} + \frac{E_{\gamma}^2}{2mc^2}$$

Second term is a small nuclear recoil correction to maximum allowed photon energy

This recoil correction ~ 10^{-5} since $E_{\pm} \sim I$ MeV but M ~ A x 1000 MeV

Generally take $\Delta E = E_v$ (except for the Mossbauer Effect, see later)

For low E_v recoil energy < 1 eV (very small, mostly negligible)

If $E_v \sim 5-10$ MeV, recoil ~ 100 eV

possibly large enough to move atom from position in lattice radiation damage e.g. in semi-conductor devices

Internal conversion

competing process for nuclear energy emission: Atomic electron wavefunctions can penetrate into nucleus Excited nuclear state interacts with such electrons "collision" of excited nucleon and an atomic electron nucleon de-excites to lower energy state electron is ionised Transition energy converted into T kinetic energy of electron

 ${}^A_Z X \to {}^A_Z X^+ + e^-$

This is different from beta decay! No change in N or Z

- ΔE = transition energy В
 - = electron binding energy T
 - = electron kinetic energy

Following conversion there is a vacancy in electronic shells Filled rapidly by cascade of electrons from higher shells Characteristic X-ray emission is observed Note: X-ray photons ~ keV & nuclear excitations ~ MeV

 $T_{a} = \Delta E - B$

Many nuclei exhibit internal conversion & beta decay These show peaks above continuous beta spectrum in low energy region

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 13

Consider lifetimes of nuclear excitations 1317 KeV level measured to have $t_{1/2} = 8.7$ ps Thus decay const $\lambda = \ln 2/t_{1/2} = 8 \times 10^{-10} \text{ s}^{-1}$ Total decay rate is sum of all rates: $\lambda_{tot} = \lambda_{1317} + \lambda_{445} + \lambda_{380}$

Note: Approximation pure gamma emission dominates! If e capture is competing process then need to account for this $\lambda_{tot} = \lambda_v + \lambda_e = \lambda_v (I + \alpha)$ α is internal conversion coefficient = λ_{p}/λ_{v}

Major reason for gamma ray study:

obtain information on excited nuclear states

Gamma rays easily detected

Energy resolution ~ 2 keV

Allows precision comparisons to theory

Most direct, precise, & easiest way to obtain properties of excitations

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 13

In ideal experiment:

gamma ray spectrum provides us energies & intensities of transitions co-incidence measurements informs us about arrangement of states absolute transition probabilities determined from half-lives of levels

Gamma ray energy spectrum of ¹⁷⁷Lu (lutetium)

Gamma spectroscopy can be combined with beta spectroscopy

 $^{177}_{71}\text{Lu}_{106} \rightarrow ^{177}_{72}\text{Hf}_{105} + e^- + \bar{\nu}_e$

Hf = Hafnium

End point of beta energy spectrum tells us of Q for the decay to lowest energy state of daughter

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 13

We have now covered all fundamental aspects of nuclear physics Will now move on to discover applications & study some in detail e.g. fusion / fission reactions medical applications

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 13

П

Summary

Gamma spectroscopy - deduce nuclear structure

Gamma absorbtion

Next Lecture

Neutron Physics