1)

The mean no. of fission neutrons per thermal neutron;
$$\mathcal{N}$$
 from
the reproduction factor formula k_0
 $\mathcal{N} = \mathcal{N} \frac{\sigma_f}{\sigma_a + \sigma_f}$ $\mathcal{N} = mean # of freethous per fission
 $\sigma_a = cross section for fission$
for ²³⁹ P₀ $\sigma_f = 842$ b $\sigma_a = 276$ b $\mathcal{N} - 2.96$ ()
 $\mathcal{N} = 2.96 \times \frac{842}{842 + 276}$ (2)
 $= 2.23$ (2)$

The pp cycle is
$$4(H) \rightarrow He + 2e^{+} + 2He + 2X$$

Total electroprogrammetic energy is from photon only
=6.55 MeV per input p⁺ (=26.2 MeV per pp cycle)
flux of radiation in 9.4 Jeni² 5¹
 $= \frac{9.4}{46.16 \times 10^{19}} \times \frac{1}{10^6} = 5.87 \times 10^{13}$ MeV cm² 5¹ (2)
of machine = $\frac{5.87 \times 10^{13}}{26.2} = 2 \times 10^{12}$ cm² 5¹ (1)
each machine produces 2 H_{25}
 $= \frac{2}{10}$ flux = $\frac{1}{10}$ flux = $\frac{1}{10}$ 5¹ (2)

[note: 2 marks per stage of calculation for total of 6 marks]

3) Fusion reactors use the DT reaction because

i) the cross section for DT is 1-2 orders of magnitude larger the	nan DD
reaction	[2]
ii) The DT reaction has a larger Q than the DD reaction	[2]

The energy density output per second = $n_1n_2 < \sigma v > Q$ [2] = $n^2 < \sigma v > Q$

$$= 10^{40} \cdot 10^{-22} \cdot 17.6$$

= 17.6 x 10¹⁸ MeV m⁻³ s⁻¹
(i.e. in 1s the energy density output is 17.6 x 10¹⁸ MeV m⁻³) [2]

Unit volume of plasma contains e, D and T particles at same temperature. There are n electrons per cubic meter and also n D+T nuclei per cubic meter. Thus 2n particles in total each with 3/2kT of thermal kinetic energy.

So energy density = 3/2kT. 2n = 3kT n

output fusion energy density in time t = t . $n^2 < \sigma v > Q$ MeV m⁻³ s fusion energy density available for heating = 0.80 . t .17.6 x 10¹⁸ MeV m⁻³ s

Thus confinement time for self-sustaining fusion reaction

=
$$3kT/(0.8 \cdot n < \sigma v > Q)$$
 [2]
= $3 \times 0.01 / (0.8 \times 10^{20} \times 10^{-22} \times 17.6)$
= 0.2 s [2]

[2]

[note: will also accept an answer of which is different by a factor of 4, i.e. t=0.8s since there was an ambiguity in the definition of the number density n in first and second parts of the question]