

<u>Nuclear Physics & Astrophysics</u> Exercises – 3

Hand in on 1st floor by Friday 22rd October 4pm

Proton mass $m_p = 1.00727647 u$ Hydrogen mass ${}^{1}H = 1.007825 u$ Neutron mass $m_n = 1.00866501 u$ Avogadro's number $N_A=6.022 \times 10^{23} \text{ mol}^{-1}$ $e^2/4\pi\epsilon_0 = 1.439976 \text{ MeV fm}$ $1s_{1/2}$; $1p_{3/2}$; $1p_{1/2}$; $1d_{5/2}$; $2s_{1/2}$; $1f_{7/2}$; $2p_{3/2}$; $1f_{5/2}$; $2p_{1/2}$; $1g_{9/2}$; $1g_{7/2}$; $2d_{5/2}$

- Give the shell model spin and parity assignments for the ground states of the following nuclei using the shell ordering given above:

 (a) ⁷₃Li
 (b) ¹¹₅B
 (c) ¹⁵₆C
 [6]
- 2. The Q value for the reaction: ${}^{9}Be + p \rightarrow {}^{8}Be + {}^{2}H$ is 559.5 KeV. Using this value and the accurately known masses of ${}^{9}Be$, ${}^{2}H$, and ${}^{1}H$ (see the Table of Nuclear Properties on the NPA homepage) to find the mass of ${}^{8}Be$ in MeV [5]
- 3. Use the Semi Empirical mass formula to estimate the kinetic energy of an α particle emitted from the decay of ${}^{242}Cf$ to ${}^{238}Cm$, where B is given by $B(Z, A) = a_V A - a_S A^{\frac{2}{3}} - a_C \frac{Z^2}{A^{\frac{1}{3}}} - a_A \frac{(A - 2Z)^2}{A} \pm \delta$ and $\delta(Z, A) = a_P / A^{\frac{1}{2}}$ and $a_V = 15.56$, $a_s = 17.23$, $a_c = 0.697$, $a_A = 23.285$ and $a_p = 12$. Should the δ term be positive, negative, or zero? Show all steps in your working. Start by calculating the masses of all three particles involved. [10]
- 4. Given the ordering of nuclear energy levels as above, estimate the separation of the $1p_{1/2}$ and $1d_{5/2}$ energy levels for nuclei with A~16 using the following information:

¹⁵ O111.96 MeV
¹⁶ O127.62 MeV
¹⁷ O131.76 MeV
[4]

5. The Bethe-Bloch formula describes the mean energy loss of a <u>heavy</u> charged particle per unit distance for a given material. The formula is modified to describe the energy loss of electrons which, at relativistic energies undergo strong bremsstrahlung processes. Sketch a graph of the expected energy loss from very low to very high momenta and show the bremsstrahlung losses. Indicate where on the graph the minimum ionising electrons would be located. [4]