

## Nuclear Physics & Astrophysics Homework – 1

Proton mass  $m_p = 1.00727647 u$ Neutron mass  $m_n = 1.00866501 u$ Avogadro's number  $N_A=6.022 \times 10^{23} \text{ mol}^{-1}$ 

- 1. Separate the nuclei below into pairs of isotopes, isobars, isotones, or isomers:  ${}^{3}_{1}H$ ,  ${}^{4}_{2}He$ ,  ${}^{3}_{2}He$ ,  ${}^{12}_{6}C$ ,  ${}^{12}_{7}N$ ,  ${}^{14}_{6}C$ ,  ${}^{99}_{43}Tc$ ,  ${}^{99}_{42}Mo$ ,  ${}^{99m}_{43}Tc$ ,  ${}^{100}_{44}Ru$
- 2. The constants of the Semi-empirical mass formula in units of MeV are:  $a_V = 15.56$   $a_S = 17.23$   $a_C = 0.697$   $a_{asym} = 23.285$   $a_P = 12$  Calculate the kinetic energy of the alpha particle emitted in the decay of  $^{242}_{98}$ Cf assuming no recoil of the daughter nucleus. A value of 7.5 MeV is obtained in experiment. Compare and comment on the calculated and measured values. [6]
- 3. From the known masses of  $^{15}$ O and  $^{15}$ N compute the difference in binding energy. [5] Assuming this difference arises from the difference in Coulomb energy compute the nuclear radius of the two nuclei. Coulomb repulsion to binding energy =  $-\frac{3}{5} \frac{Z(Z-1)e^2}{4\pi\epsilon_0 R_0 A^{\frac{1}{3}}}$

Atomic mass of  ${}^{15}N = 15.000109 u$ Atomic mass of  ${}^{15}O = 15.003065 u$ 

4. The ordering of the lowest nuclear energy levels is:

1s<sub>1/2</sub> 1p<sub>3/2</sub> 1p<sub>1/2</sub> 1d<sub>5/2</sub> 1d<sub>3/2</sub> 2s<sub>1/2</sub> 1f<sub>7/2</sub> 2p<sub>3/2</sub> 1f<sub>5/2</sub>

Using this information determine the shell configuration of neutrons and protons and hence the ground state spin and parity assignments of the following nuclei:

$${}^{3}_{2}\text{He} \quad {}^{20}_{10}\text{Ne} \quad {}^{27}_{13}\text{Al} \quad {}^{41}_{21}\text{Sc} \quad {}^{69}_{31}\text{Ga}$$
 [15]