
Answer 1 (i) [6 marks] Recall Gauss’ law
∫

V ∇X dV =
∫

S X · dS, for any vector
field X. Let C be the closed contour in space with line element
dl along the contour. We also have Stokes’ theorem

∮

C X · dl =
∫

S′
(∇ × X) · dS′. These results may be used to write Maxwell’s

equations as given. These follow by integrating the scalar Maxwell
equations over a volume V and the vector equations over a surface
S ′ with element dS′.

(ii) [8 marks] Consider first a very small shallow cylinder which strad-
dles the boundary between the two regions, for which the normals
to the circular ends of the cylinder are perpendicular to the bound-
ary. Apply the first and third of the Maxwell relations above to
the volume and surface of this cylinder. Ignoring the contribu-
tion from the infinitely thin sides of the cylinder one finds that
∮

S D · dS = (D2 − D1) · n∆a, where ∆a is the area of the circu-
lar end of the cylinder, and n the unit normal to the boundary.
For the electric case, given a surface charge density σ we have
∫

V ρ dV = σ∆a. Thus we deduce the boundary conditions

(D2 − D1) · n = σ, (B2 − B1) · n = 0,

the second equation following by similar arguments, noting the
absence of magnetic charges.

Now consider a small rectangle which straddles the boundary be-
tween the two media. This rectangle has short sides which are
infinitesimally small, and longer sides of length ∆l which are par-
allel to the boundary. The unit normal t to the rectangle is
tangent to the interface between the regions. Then

∮

C H · dl =
(t × n) · (H2 − H1)∆l. Assume that there is a current density K

flowing on the rectangle surface S′. Then
∫

S′
(J+∂D

∂t )·dS′ = K·t∆l,
since the D term vanishes as the area of the cylinder goes to zero.
Thus we deduce from the second and fourth of the Maxwell inte-
gral relations that

n × (H2 − H1) = K, n × (E2 − E1) = 0,

the second equation following again by the same arguments, noting
the absence of magnetic sources.

(iii) [6 marks]

The relevant boundary condition is

Ep + E′′

p = E′

p,

where the subscript p refers to the component parallel to the in-
terface. This immediately gives the required equation. If this is
true for all x then the exponents in the equation must be equal,
which implies the two relations given.



Answer 2 (i) [4 marks] Use B = ∇ × A, and ∇r = n and note that the ∇
operator when acting on the 1/r term produces a term of higher
order in 1/kr in the far zone. Then the curl just produces an
expression ik n× which gives the result.

(ii) [5 marks] From the fact that the time dependence of the fields is
e−iωt one has Ė = −iωE. Then, using the same arguments as in
part (i) one deduces from the given source-free equation that in
the far zone one obtains the required expression.

(iii) [8 marks] The first part is immediate, using c2 = 1/ε0µ0.

Then

Bm.d.(m) = ∇×Am.d.(m) =
i

kc
∇×Be.d.(p → m) =

1

c2
Ee.d.(p → m).

Also,

Em.d.(m) =
ic

k
∇×Bm.d.(m) =

i

kc
∇×Ee.d.(p → m) = −

1

k2
∇×(∇×Be.d.(p → m)).

This equals

1

k2
∇2Be.d.(p → m) =

1

k2
∇×(∇2Ae.d.(p → m)) = −

ω2

k2c2
∇×Ae.d.(p → m)

= −B(e.d.)(p → m).

(iv) [3 marks] The polarisation is defined as the direction of the electric
field E. For the electric dipole E,p and n are in the same plane,
and B is perpendicular to this plane, with E,B,n mutually per-
pendicular.

For the magnetic dipole E,m and n are in the same plane, and B is
perpendicular to this plane, with E,B,n mutually perpendicular.

Thus the two are related by interchanging E,B and interchanging
p,m.



Answer 3 (i) [3 marks] We have ∂µFµν = ∂µ∂µAν in Lorentz gauge, from which
it is straightforward to deduce the two equations.

(ii) [4 marks] This requires integrating the term involving ∂2

∂t2 twice
by parts to bring down a factor of −ω2 from the exponential, and
dropping boundary terms assuming that the fields and their first
two time derivatives fall off to zero at infinity.

(iii) [3 marks] Here one pulls the d’Alembertian operator inside the
integral and acts with it on G. This generates a delta function
which is then integrated with J to give the required answer.

(iv) [5 marks] The d’Alembertian operator is invariant under trans-
lations and spatial rotations, hence the function G must be a
function of the scalar r alone. When r %= 0, the delta function
does not contribute and one has a standard second order ordinary
differential equation for rG, which is solved by an arbitrary linear
combination of the two exponentials.

(v) [5 marks] When r → 0, then the 1/r term dominates on the left-
hand side and one has

1

r

d2

dr2
(rG) = −4πδ3(r).

This is Poisson’s equation if one identifies Φ = Gk, and ρ =
4πεδ3(r). Using this in the given solution one finds that G = 1/r
and hence that one must have A + B = 1.



Answer 4 (i) [6 marks] These follow from div curl = 0 = curl grad and manip-
ulations of the equations.

(ii) [2 marks] Straightforward calculation.

(iii) [4 marks] This follows as the partial derivatives commute. The
gauge transformations on Aµ are

Aµ → Aµ − ∂µΛ

which leave Fµν invariant as the derivatives commute again.

(iv) [8 marks] Write

J(x) =

∫

δ3(x′ − x)J(x′) d3x′ = ∇2

∫

−1

4π

J(x′)

|x′ − x|

= −
1

4π
∇∇ ·

J(x′)

|x′ − x|
d3x′ +

1

4π
∇×∇×

∫

J(x′)

|x′ − x|
d3x′ =: Jl +Jt

with ∇×Jl = 0 and ∇·Jt = 0, so that these fields are longitudinal
and transverse respectively. Now ∇2Φ = − 1

ε0
ρ in the Coulomb

gauge, so that

Φ =
1

4πε0

∫

ρ(x′)

|x′ − x|
d3x′

whence

1

c2
∇Φ̇ =

1

4πε0c2
∇

∫

ρ̇(x′)

|x′ − x|
d3x′ = −

µ0

4π
∇

∫

∇′·
J(x′)

|x′ − x|
d3x′ = µ0Jl

(as ∇ · J + ρ̇ = 0). Thus

∇2A −
1

c2

∂2A

∂t2
= −µ0J +

1

c2
∇Φ̇ = −µ0Jt.



Answer 5 (i) [2 marks] The first term in the expression for the electric field (the
velocity field) may be dropped, since we are interested only in the
field far from the particle, and the acceleration field dominates
there. Furthermore, we are told that the acceleration is parallel
to the velocity, so that β × β̇ = 0, and what is left is what was
asked to be shown.

(ii) [4 marks] The magnetic field may be derived from B = [n ×
E]ret/c, and then we have

S =
1

µ0
E×B =

1

µ0c

( q

4πε0c

)2[ n × [n × β̇]

(1 − β · n)3R

]

ret
×

{

n×
[ n × [n × β̇]

(1 − β · n)3R

]

ret

}

,

and after use of the identity
(

n × [n × β̇]
)

×
(

n ×
(

n × [n × β̇]
)

)

= [n × β̇]2n

this gives the desired result.

(iii) [6 marks] With the expression just obtained, n · S is the energy
per unit area per unit time detected at the observation point at
the time t. This was emitted by the particle at the retarded time
t′ = t−R(t′)/c. So in a time interval from t′ = T1 to time t′ = T2

the energy radiated would be

E =

∫ t=T2+R(T2)/c

t=T1+R(T1)/c

n · S dt =

∫ t′=T2

t′=T1

n · S
dt

dt′
dt′,

which implies the required result. Using dt
dt′ = 1−β·n = 1−β cos θ,

the second result follows.

(iv) [2 marks] In the non-relativistic limit, the equation above becomes

dP

dΩ
=

q2

4πε0

1

4πc3
u̇2 sin2 θ,

as required.

(v) [6 marks] The angular dependence is in the factors

sin2 θ

(1 − β cos θ)5
,

and so the maximum intensity occurs in the direction where this
has a maximum, given by simple calculus as where 2 sin θ cos θ(1−
β cos θ) = 5 sin2 θ β sin θ, which gives a quadratic equation for cos θ
-

3β cos2 θ + 2 cos θ − 5β = 0.

There is only one root with a real value for θ, and that is the one
given.


