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Question 1

(a) The frequency-dependent relative permittivity εr(ω) is defined by

D(x, ω) = ε0εr(ω)E(x, ω).

Hence, show that

D(x, t) = ε0E(x, t) + ε0

∫ ∞

−∞
G(τ)E(x, t − τ)dτ

where

G(τ) =
1

2π

∫ ∞

−∞
(εr(ω) − 1)e−iωτdω.

[8]

In a simple molecular model for the permittivity

εr(ω) − 1 =
ω2

P

(ω + iγ
2 − ωR)(ω + iγ

2 + ωR)

for real ωP , ωR. Using contour integration

(b) Explain why D(x, t) is causally related to E(x, t). [5]

(c) Show that for τ > 0

G(τ) = ω2
P e

−γτ
2

sin(ωRτ)

ωR

[7]
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Question 2

Consider the Maxwell equations in a vacuum with sources -

(a) Show that the first two of these equations may be solved by introducing the potentials
A and Φ, and writing

B = ∇× A, E = −∇Φ−
∂A

∂t
.

Show that the other two Maxwell equations then become

∇2Φ +
∂

∂t
(∇ · A) = −

1

ε0
ρ,

∇2A −
1

c2

∂2A

∂t2
−∇(∇ · A +

1

c2

∂Φ

∂t
) = −µ0J.

[6]

(b) Using Aµ = (A0 = Φ
c
, Ai) and the definition F µν = ∂µAν − ∂νAµ show that

F ij = −εijkBk

Ei

c
= −F 0i

[4]

(c) Prove
∂λF µν + ∂νF λµ + ∂µF νλ = 0

and show that taking one index to be 0 and two indices to be spatial gives one of
Maxwell’s equations. [5]

(d) Show that two of the remaining Maxwell’s equations are equivalent to ∂αFαβ = µ0jβ.
where jβ is related to charge density ρ and current density J by jα = (ρc, J i) [5]
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Question 3

The Lagrangian for electromagnetic fields, in the absence of sources, is

L =
−1

4µ0

∫

d3xF αβFαβ

In the following, you may freely use the equation of motion ∂µF µα = 0 which follows from
this Lagrangian.

(a) The canonical stress tensor is expressed in terms of the Lagrangian density L by

T ν
µ = ∂µAα

∂L

∂(∂νAα)
− δν

µL

Derive an expression for T ν
µ in terms of the tensors F and A. [4]

(b) Show that it satisfies ∂µT µ
ν = 0. You may assume the equation of motion ∂µF µα = 0

in the absence of sources. [4]

(c) Show that T µν differs from the symmetric stress tensor

Θµν =
−1

µ0
[F λµF ν

λ −
1

4
ηµνFαβFαβ]

by a total derivative. [4]

(d) Show that ∂µΘµν = jλF ν
λ in the presence of sources. You may use the fact that two

of Maxwell’s equations can be expressed as ∂αFαβ = µ0jβ. [4]

(e) By computing Θ00,Θ0i, show how the sourceless equation ∂µΘµν = 0 can be used to
express the conservation of energy. You can assume that F 0i = −Ei

c
, F ij = −εijkBk [4]
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Question 4

The electric field at large distances from a charge q following a trajectory r = r(t), with
instantaneous velocity u = dr

dt
= cβββ, |βββ| << 1 is given by

Efar =
q

4πε0c

[ 1

R
(n × (n × β̇̇β̇β))

]

ret

(a) Explain the meaning of the notation [. . .]ret, and define the distance R and the direction
vector n. [5]

(b) Assuming that the corresponding magnetic field is given by

Bfar = [n × Efar]ret /c,

show that at large distances, the Poynting energy-flux vector is

Sfar =
1

µoc
|Efar|

2n

[5]

(c) Derive the Larmor formula

P =
q2

6πε0m2c3

dp

dt
·
dp

dt

for the total instantaneous power radiated by a non-relativistic accelerated charge. [5]

(d) Write down the Lienard formula which is a relativistic generalization of the Larmor for-
mula. Apply it to relativistic motion in a circle radius ρ with angular frequency ω, under
conditions where the rate of energy loss per revolution is small, to derive the formula for
the power loss

P =
q2

6πε0

cβ4γ4

ρ2

You can assume that |dp
dt
| = ω|p|. [5]
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Question 5

(a) Derive, for the Dirac delta function, the equation

δ(f(x)) =
δ(x − x0)

|∂f
∂x

(x0)|

for the case where f(x) has a single simple zero on the real axis at x = x0. [4]

(b) Using the formula dτ 2 = dt2 − c−2dx · dx for the infinitesimal change in the proper time
of a particle, derive expressions for the components U0, U i of the four-velocity Uµ = dxµ

dτ

in terms of γu = 1√
1−β·β and u = βc. [3]

(c) The scalar potential due to a moving charged particle, along a trajectory r(t′), is given
by

Φ(x, t) =
q

4πε0

∫

dt′
δ(t − t′ − |x−r(t′)|

c
)

|x − r(t′)|
.

Show that

Φ(x, t) =
q

4πε0

1

|x − r(tr)| − β(tr) · (x − r(tr))

where c(t − tr) = |x − r(tr)|. [6]

(d) Show that the above equation for Φ is the time-component of a 4-vector equation

Aµ =
µ0qc

4π

Uµ

(xν − rν)Uν

.

[5]

(e) Write down a formula for the vector potential of a moving charge. [2]
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Formula Sheet

a × (b × c) =(a · c)b − (a · b)c,
∇ · (ψa) = a · ∇ψ + ψ∇ · a,
∇× (ψa) = (∇ψ) × a + ψ(∇× a),
∇× (∇× a) = ∇(∇ · a) −∇2a,
∇

(

ψ(r)
)

= nψ′(r).

Maxwell’s equations:

∇ · B = 0, ∇× E = −∂B
∂t

;
∇ · D = ρ, ∇× H = J + ∂D

∂t
.

F = q(E + v × B).

∇ · J + ρ̇ = 0.

For Fourier transforms :

f(t) =
1

2π

∫ ∞

−∞
f(ω)e−iωtdω

f(ω) =

∫ ∞

−∞
f(t)eiωtdt

1

2π

∫

dteiω(t−t′) = δ(t − t′)

For linear isotropic media:

D = εE = ε0E + P, H =
1

µ
B =

1

µ0
B − M.

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2 = dxαηαβdxβ.

ηαβ =

{+1 if α = β = 0
−1 if α = β = 1, 2, 3
0 if α %= β

∂µ =
∂

∂xµ
=

(1

c

∂

∂t
,∇

)

, ∂µ =
(1

c

∂

∂t
,−∇

)

.

∂αFαβ = ∂α∂
αAβ − ∂β∂αAα = µ0j

β; Fαβ = ∂αAβ − ∂βAα.

∂αFβγ + ∂βFγα + ∂γFαβ = 0.

Energy density and Poynting vector :

u =
ε0
2

(E2 + c2B2)

-S =
1

µ0
(E × B)
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