MSci 4261 ELECTROMAGNETISM
LECTURE NOTES VIII

In these notes we will formulate classical electrodynamics in an explicitly Lorentz covariant manner.
8.1 The Charge-Current Density Four-Vector

Consider an element of charge at rest in a frame K, occupying the volume element da' dz? dz?, so that
g g
q = pdz' da® da.

In the frame K’ this same element of charge will occupy the volume element dz'* dz'? dz'® = (v~ 'dz') dz? dz?
and since the total amount of charge in the volume element is the same in both frames,

qg= pl dmll dle d.’L'B,

and it follows that
Pl =p.
But note also that in K’ the element of charge is mowving, with a velocity u’ = —Bc so that there is also a
current density in K' given by
j' = p'ul = —yBep.
So we have (p;j = 0) in K transforming to (p' = vp;J' = —yBcp) in K', which suggests writing j° = cp,J =

(J1,J2,J3) since then the transformation of j# may be recognised as that of a four-vector. In fact our
element of charge has a four-velocity U*, and we have

¥ = poU¥

where pg is the charge density in the frame in which the element of charge is at rest. We may conclude that
the charge-current density j = (¢p,J) is a contravariant 4-vector.
Note also that the continuity equation

ap _
E—FV-J—O

is

aj° a5t  94* 95

FrC e R
or
Oug* =0
where 5
6”56?'

The continuity equation is thus a manifestly covariant equation.

8.2 The Lorentz Force

Having found the transformation rule for the sources j* it is natural to turn to the question of the
transformation rules for the fields themselves. As a step in this direction, recall that the fields are in fact
defined through the Lorentz force

F=¢E+uxB)
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on a test particle of charge ¢ moving with velocity u. Since F = ‘fl—ﬁ’, we have

dp

dr

dt
dr
q(E+uxB)y,

q¢(E+u x B)

1
q(EEUO + U x B),

and also the rate of change of the energy £ of the test particle is given by

a1t de
dr  cdr dt
1
=~ ~gE-
C'Yq u
=1g.u.
C

Thus
d p° _4q E.-U
dr\p/) c¢c\EU°+cUxB )/’

d (6
—p® = qF*FU,

ar? ¢ A
where F®8 is a certain second rank tensor, the components of which are given in terms of the E and B fields.
It is possible to obtain this result directly, but it is easier and also more useful to proceed by introducing
the potential four-vector.

which may be written as

8.3 The Potential Four-Vector
Recall that for any potentials A, ® with the definitions

B=VxA,
E=-V&—A,
two of Maxwell’s equations, namely the pair
V-B=0,
VxE+B=0,

are automatically satisfied. Furthermore, the gauge transformations

A—>A+Vy
d— P —x

to the vector and scalar potentials leave the fields E and B unaltered - the latter are are gauge invariant.
Under a gauge transformation, the quantity

LEV-A-F%(i)
c

transforms as
L L'=L-n0y,

using the D’Alembertian O = 3178%27 — V? (since
0 = 100,85 = 00,
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it is a Lorentz scalar). By suitable choice of x it is always possible to impose the Lorentz gauge
1.
c

This condition is indeed Lorentz invariant: if true in one frame, it remains satisfied in any other.
Whatever the choice of gauge, as we have seen, the pair of Maxwell’s equations which do not involve
the source terms are automatically satisfied. We now turn to the other pair of equations, namely
V-E = poc?p
V x B = po(J + &FE).

Written in terms of the potentials, and making use of the vector identity
Vx(VxA)=V(V-A)-V?A,

these become )
OA+V(V-A+ C—2<i>) = poJd
and 1 10 1
0lo 20w A+ Lé) = poep.
¢ ¢ at (V + C2 ) HoCp
Recalling that we have defined
L=V -A+ l2<i>,
c
and suppose that we define

AV = 1<I>,
c

what we have is
OA* — "9, L = poj*.

And since we know that j# is a four-vector, this suggests that A* is likewise a four-vector, in which case
L is indeed a Lorentz scalar, and the field equations satisfied by the potentials A* are seen to be Lorentz
covariant.

Note that if we impose the Lorentz gauge condition, in which case L = 0, the equations simplify to

DAY = poj”; B, A" =0.

8.4 The Field-Strength Tensor

We have expressed the electric and magnetic fields in terms of the potentials, and we know how the
potentials change under a Lorentz transformation,

Al o A= AR, AV

From this follows the transformation laws for the electric and magnetic fields. To obtain them most simply,
note that the field components are all of them of the form

FP = 9%AP —9°A°,

where 0% = n*9 = 8° = §y; 8' = —01, etc. For example, B® = 8(54; - 85\; = — (8243 — 52A4?) and
1pr =182 _154° — (904 — 9'A°). Thus the components of the tensor F*% arranged as a matrix are

0 —E*/c —EY/c —E?/c

posy_ | E/c 0 -B*  BY
ITE*20=1 gy B 0 _pe
E*lc -BY  B® 0
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This second-rank contravariant antisymmetrical tensor is the field-strength tensor; because of its an-
tisymmetry F*# = —FBe it has only six independent components. We can of course lower its indices to
obtain Fog = nqung, F*”, with

0 E*/c EY/c E*/c

_ —Ez/c 0 —B* BY

||Faﬁ ”_ _Ey/c B* 0 _B®
—EZ/C —-BY B* 0

For any choice of potentials A, the fields F,,, = 0,A, — 0, A, automatically satisfy
a}\F;u/ + auFV/\ + BVF)\;J, =0,

and expressed in terms of the electric and magnetic fields, these equations are once again the homogeneous
pair of Maxwell’s equations, i.e., those which do not involve the sources.
As for the inhomogeneous pair of Maxwell’s equations, these are obtained from
OaFP = 9,(0% AP — 9P A%)
=0AP — 9P (0,A%)
=04° - 8°L
= poj”.

Returning for a moment to the force equation, which we had written as
d (%) _ .U
dr\p) " I\lEU°+UxB)"

dipo = q(_F01U1 _ F02U2 _ F03U3)
-

we now find that

= q(FO'U, + F*?U, + F%Us)
= qF%Up,
and for example
dirpl — (= FO'U° + U?(=F'?) — U3 F13)
= q(F'"°Uy + F'?Us + F'Us)
= qF'PU;.
So as advertised,

d (64
—p* = qF*PUj.
dTp q A
To spell out what precisely is the Lorentz transformation law for the electromagnetic field, we recall
that the transformation law for any contravariant tensor such as F*¥ is given by

FrY _y IRV — AB ANV FR
where for the standard boost the coefficients A#, may be arranged as the matrix

cosh( —sinh{ 0
u i | —sinh¢ cosh¢ O
0

0 0

= o OO



So in terms of matrices, we have
F 5 F' = AFA",

(AT denoting the matrix transpose of A). Straightforward matrix multiplication then yields

Ela) — E.’l)

E'"Y = EY cosh( — B?c¢ sinh(

E'* = E* cosh( + BY ¢ sinh (;

Blav — Bav

] E* .
B"Y = BY cosh( + — sinh ¢
c

B'* = B* cosh ¢ — gsinhC.
¢

These can also be written as )

E'=7(E+cﬂ><B)—711B(/3-E)
,72

B'=+(B- -fxE)- L -H(§B).

v+1

8.5 The Dual Field-Strength Tensor

Another useful tensor whose components are the electric and magnetic field-strengths is the dual tensor
defined by

1
*Faﬁ = EeaﬁNVFI“/
which makes use of the Levi-Civita alternating tensor eqgpy:

c _ { +1 if afuv is a £ve permutation of 0123
By 0  otherwise

Thus *Fgl = %(60123}723 +€0132F32) = F23 = —Bz, etc., and *F12 = %(61203}703 +61230F30) = F03 = —Ez/c,
etc., so that

0 —B* —BY —B*
« _ | B 0 —E*/c EY/c
” Faﬁ” ~— | Bv EZ/C 0 _Ez/c

B* —EV/c E%/c 0

To show that *F' is in fact a tensor, it is simplest to show that ey, is a tensor, and this is done by
consideration of the formula

ozY 0x° OxP Oz°

dz'™ 9’8 dx'm o 0P
Ox
= det (%)eaﬂﬁ“"

The determinant is just [det A]~!, which from the result obtained earlier is +1. Its presence shows that
€ is in fact a pseudo-tensor; it changes sign under a reflection or a change in the sense of time. Lorentz
transformations like these, which have det A = —1 are called improper, and we will henceforth exclude them.
For the proper Lorentz transformations, the determinant factor is unity.

Since F' and *F' are both tensors, the contractions F*F),,, F*'*F,,, and *F#"*F,,, are Lorentz scalars.
It is easy to evaluate them; they are respectively 2(B? — E2/c?),4E - B/c, and 2(E?/c? — B?). In fact these
are the only independent Lorentz scalars which can be constructed from the field-strengths. Note that they
allow a classification of electromagnetic field configurations according as E2 > B%¢?, E? = B2¢?, E? < B2¢?
which is invariant under Lorentz transformations.

!
€afpv € afur =




8.6 The Energy-Momentum Tensor

Recall the definition of the Maxwell stress tensor, here denoted T, in an earlier lecture:

elT[be = E,E, + BBy — %(E ‘E+ B -B)dy.
0
The divergence of this expression was directly related to the conservation of momentum, with g = C%(E x H)
the electromagnetic momentum density. Since Maxwell’s equations are invariant under the transformations
of special relativity, and can be written in the manifestly covariant form 6*F,, = 0, there must exist a
covariant form of the stress tensor, which includes the expression above. Setting €9 = 1 for simplicity in the
following, it is easy to guess that this expression is

1

1
ST = —F*oF"* + 2" F* Fop.

The components of this tensor are

1
TOO — §(E2 +02B2),
T% = —¢(E x B)s,

1
—T" = BBy + ¢ BoBy — 5(E - E + ¢"B - B)dy.

Notice that the 7% component is equal to the energy density £ and the vector defined by the 7°% components
is —c times the momentum density g. Finally, T is minus the Maxwell tensor above.
It is straightforward to check that the condition

OMT,, =0

follows using the equations of motion 0#F),,,. This equation expresses in a Lorentz covariant manner the
conservation of energy and momentum. Integrating it over a closed spacelike hypersurface yields the result
that the energy flow across the surface is balanced by the change of energy within, and similarily for the
momentum.

In the presence of currents due to charged particles, the Maxwell equations become 0*F},, = poj,. The
conservation law here becomes

O'T,, = —F,,j°.

(This is mostly easily derived using the Lagrangian formulation of electrodynamics, as we will see later in
the course.) The components of this conservation law are

o€

E‘FV'P:—JE,
%—6”T;‘g=—pEa—(JxB)a.

The first equation expresses the conservation of energy. The second expresses conservation of momentum.
The sources are described by the four-vector j* = (¢p,J) and P = E x H. The four-vector f? = F5%j, is
the Lorentz force density, with components

1
fB:(EJ-E,pE+JxB).

Note that this discussion has assumed that the charged particles do not radiate or have self-interaction effects
due to the electromagnetic field. In general (eg at relativistic velocities or energies), this assumption cannot
be made. A full relativistic treatment of the interaction of particles and fields requires quantum field theory;
for electrons and the electromagnetic field this is the theory of quantum electrodynamics, or QED for short.
Some discussion of this will be given at the end of the course.
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