MSci 4621 ELECTROMAGNETISM
LECTURE NOTES VII

In this section of the notes, we will turn to the discussion of the Lorentz covariant formulation of
elecctrodynamics.

7.1 Special Relativity

The fact that the speed ¢ of propagation of the electromagnetic waves predicted by Maxwell’s equations
is a universal constant, independent of the motion of the source or of the detector of the waves was the basis
on which Einstein built the special theory of relativity (1905). The basic postulate is that the fundamental
laws of physics have the same form no matter in which inertial frame they are expressed. What is special
about the theory is that it restricts its formulation to inertial frames of reference. Since inertial frames are in
uniform rectilinear motion with respect to one another, the laws of nature must preserve their form under the
transformations of coordinates appropriate to passage from one inertial frame (K) to another (K'), where
K' is moving uniformly in a straight line with respect to K.

Note that the fundamental laws of nature also preserve their form under that change of coordinates
which results from a rotation of the frame of reference, which is most simply appreciated by expressing them
using the notation of vectors. For then so long as both sides of an equation are together scalar, or vector,
or whatever as the case may be, the effect of a rotation is the same on both sides, and what was true in one
frame remains true in the rotated frame. The equation is covariant under rotations.

It is already clear that Maxwell’s equations are indeed covariant under rotations, since we regard E
and B as vectors. We will see that they are also covariant under the boosts, i.e., the transformations which
transform one inertial (K) frame to another (K'). As usual, we suppose that the frames K and K’ coincide
at t =t = 0, and consider a flash of light emanating from their common origin at the instant they coincide.
Then the (spherical) wave front described in K by

4y’ + 27 =

will be described in K' by
22 ¢ + 2 = 22,

Homogeneity and isotropy of space and homogeneity of time require a linear relationship between (z',y', 2',t')
and (z,y,2,t). If we have the “standard orientation” of the axes, so that the frames are parallel, with their
relative motion along the z- direction, then consistency of

24422 = PR o 4 y? 422 = 22

with linearity of the transformation gives

ct' = y(ct — Bx)
z' = y(x — Bet)
y'=y
2=z
where v = \/11_?, B=|Bl, B=7Y,and v is the relative velocity of K’ with respect to K. The inverse

relations are
ct = y(ct' + Bz')
z=y(z' + fet’)



For parallel axes, but when v is not necessarily along the z-direction, one has

ct' = y(ct — B-x)
x' = x| +x1 —yBct

where x| = ’;—E B is the component of x parallel to v and x; = x — X is the component perpendicular to v.

7.2 Four-Vectors

We now introduce the notation
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and define the rapidity variable ¢ by v = cosh ( (so that 8 = tanh (), and then find that the equations for
the Lorentz transformation of the coordinates (with standard orientation of the axes) can be written as

cosh ¢ 2% — sinh ¢ 2!

—sinh ¢ z° + cosh ¢ z!
2

=z

3

=T

which is formally very similar to the transformation law for rotations (e.g., for a rotation through an angle
6 about the z3— or z—axis);

20 = 40
z't = cosfz' + sinf 2?
2% = —sinf ' + cos @ 22
z'? =23,

We call any set of four quantities V#, u = 0,1,2,3 which transform in this fashion under boosts and

rotations a four-vector, thus
V"% = cosh ¢ VO — sinh ¢ V!

V1 = —sinh (V° 4+ cosh ¢ V1
V12 — V2
Ve =V
Note that if V# and U* are the components of any two four-vectors, the combination
VOUO _ VlUl _ V2U2 _ V3U3

is an invariant, that is to say it is unchanged when one replaces V by V' and U by U'. We can call this
combination the (Lorentz) scalar product between the vectors, and write it as

V.u=vU’-v.u.

In particular
dz’da® — datdat — da’da® — daPda® = Adt* — |dx|?

is invariant, and we write it as ds? or as c?d7>.

Two ‘nearby’ events in space-time, separated by dz# are said to be space-like separated iff (= if and
only if) ds? < 0, or time-like separated iff ds®> > 0, or null- or lightlike- separated iff ds?> = 0; and these
notions are independent of the reference frame.



7.3 Time Dilation and the Lorentz-FitzGerald Contraction

If a particle moves with a 3-velocity u(t) with respect to a frame K, then in the time interval dt (as
determined in K) it changes its position by dx = u(t) dt; so the space-time interval traversed is given by

ds® = c2dt? — |dx|* = 2dt? — u’dt?
2
2 7,2 u

= Cz(]' - /Bi)dt2,

and this is invariant. Consider the instantaneous rest-frame, i.e., the frame in which the particle is instan-
tanously at rest. In this frame, the time interval corresponding to dt is called dr, and evidently the space
interval is zero, since the particle is at rest. Thus we have

dr = \/1— B2 dt,

or o
dr = —
Yu

which gives the relation between the time interval dr (the so-called proper time) as measured by a clock
moving with the particle, and the time interval dt as measured in the frame K in which the instantaneous
speed of the particle is u(t). Since v > 1, we have

T2 dt T2
tz—t1=/ EdT:/ ydr > 1 — 11,
T T1

1

so that moving clocks run slow. This is the phenomenon of time dilation.
Likewise, if we consider a rod of length L as measured in the frame K in which it is at rest, its end
point may be taken to be at £ = 0, x = L. Events which occur at the end-points thus have coordinates

These same events will, in frame K’ have coordinates

20 = et z'% = ~(cT — BL)
z'' = —Byet 2"t = (L — BcT)
2% =0 z'? =0
=0 2" = 0.

The length of the rod as determined in K’ is the distance between simultaneous positions of its end-points;
i.e., one must set 2'° = et = v(cT' — BL), and then the difference between the z'* coordinates of the
end-points is
L' =y(L — feT) = (—Bret)
=L+ py(ct = cT)
= 7L+ By(-BL)
1

=-L.
v

And since v > 1, this shows that L' < L, which is the Lorentz-FitzGerald contraction.
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7.4 The Four-velocity

Since dz* is a four-vector, and dr = 1/(dz%)2 — (dx)? is a scalar, it follows that

dz* _ cdzt
dr — \/(dz9)? — (dx)?
_ dz# 1
Wi (%)%
_ dz#

1 —_ 1 —u — __dx . . . .
is a four-vector, where 7, = S5’ Bu=%, u=|ul and u = ZF. We write U* for this four-vector, giving

U=, c

U=n~,u
For a particle with a velocity u, (or better to say, 3-velocity u), this four-vector U = «,(c,u) is called its
four-velocity. Note that U2 = U - U = 72(c? — u?) = ¢*.
7.5 Energy and Momentum

The non-relativistic definitions p = mu of momentum and KE= %mu2 of kinetic energy are replaced
by
p = moU = myy,u = myu

together with
p° = moU°® = moyuc = myc,

so that p°c = m,,c? which may be recognised as the total relativistic energy E for a particle of rest-mass mq
with speed u. Thus (E/c,p) is a four-vector = mo(U°, U), with

P’ = (Efe)’ —p* = mg[(U°)? — U] = mgU* = mige?,

ie.,
E? = p2¢? +m(2)c4
so that
E = \/m3c* + p2c?
1 2
=m C2 + _p_ +
mo

which shows that the total relativistic energy E has an expansion which leads off with the rest-mass contri-
bution mgc? and has as its next term the non-relativistic kinetic energy p?/2mg = %mOuQ.

7.6 Covariant and Contravariant Vectors

The Lorentz transformation rule can be expressed as a matrix equation

Vo cosh( —sinh¢ 0 0 Vo
vt | —sinh¢ cosh¢ 0 0 vt
Ve 0 0 10 V2
V3 0 0 0 1 V3
or
V=" ARV

v
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where the elements of the transformation matrix are

ox'*

A*, = )
ox?

A very useful convention, known as the FEinstein summation convention, is to omit the summation sign in

the previous equation and to write simply
Vit = AV,

it being understood that whenever an index is repeated, it should be summed over: and whenever an index
is repeated it will always be once ‘up’, and once ‘down’. This form of the transformation rule is valid for
any Lorentz transformation, be it a boost or a rotation or a combination of such.

Any four-component object which transforms as

VE o V= AV

is a four-vector, and such a four-vector is called a contravariant four-vector, and is always written with the
index ‘up’. This is to distinguish it from another kind of four-vector, which is written with the index ‘down’.
An example of this kind is given by the gradient of a scalar f. So if f is a scalar function, the set of its
partial derivatives with respect to the coordinates

o= 2L

= Jpa

transforms as some sort of a vector — but not as a contravariant vector. This is clear from consideration
of df = 0, f dxz®, which is of course a scalar, and is thus some sort of a scalar product between the vector
whose components are dz® and the gradient with components 9, f. The transformation law can easily be
derived from

of _ of oz

dx'> — OzP dx'’

which is just the chain rule for differentiation. So the new transformation law is

zP
Uy — UA = UB&E—Ia’
and a vector with this transformation law is called a covariant vector. It is also clear that we may write this
as
U, =Ug(A™1)P,.

7.7 Tensors

Either kind of vector is an example of a more general object called a tensor. A tensor is something which
has a linear transformation rule, in this case (for a Lorentz tensor) under the Lorentz group of transformations
from one frame to another. The simplest kind of tensor is one for which the transformation says simply ‘no
change’, thus

S—8 =38,

and this is characteristic of a scalar, which may be called a tensor of rank zero. The rank of a tensor is
the number of indices it carries. So a vector is a tensor of rank 1. (And we need to specify whether those
indices are contravariant or covariant.) A contravariant tensor of rank 2 is then a two-index quantity with
both indices ‘up’, say M®#. Since each index ranges over the four possibilities (0,1,2,3), there are 4 x 4 = 16
components, and in general M®? # MP*, The transformation law for such a tensor is

M8 — M'™P = A APs M.

If M*# = MP2, the tensor is said to be symmetric and this symmetry is preserved in going from one frame
to another. Similarly if M3 = —MP<, the tensor is said to be antisymmetric, or skew symmetric, and again
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this property is independent of the reference frame. A symmetric second rank tensor has only 10 independent
components (= 4+ %), an antisymmetric second rank tensor has six independent components. A covariant
second rank tensor will be a two-index quantity like F},,, with transformation law

Fuy — FIIW = FPG(A_I)pu (A_l)au-

Also to be encountered are mized tensors of the second rank, like D*g with one contravariant and one
covariant index, and the corresponding transformation rule

Dag — Dlag = Aa,wag(Ail)ég.
Of special interest is the tensor given by

5o — 1, when a = f;
B 0, otherwise.

If these are the values of its components in the frame K, then in the frame K’ they will be

5= A% (AT
=A%, (A1)
=43,

since thought of as a matrix, §§ is just the unit matrix. This means that J§ is an invariant tensor.

It is useful to think of the components V# of a contravariant vector arranged as a column

and then the transformation law may be given by matrix multiplication rules as
VsV =AV.
Now the Lorentz transformations keep invariant the form
U-V=UV"-U'V'-U?V? - U*V? = UnesV?,
where we define

—1, when a=p#0;

+1, when a =4 =0;
Napg = {
0, when a # f.

Thus for any U,V we have
UlanaﬁVIB — Uanaﬂvﬁa

so that
A* U e AP sV = UV, s VO

for every U,V which means that the coefficients of each and every Lorentz transformation have to satisfy
A% maphPs =
YapA™s = Ths-

Written in terms of matrices, this is
ATnA =1,
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where AT is the transpose of A. If  had been the unit matrix, this would be the condition that the matrix
A was orthogonal; as it is, the matrix is said to be pseudo-orthogonal. A consequence, which we shall need
later, is that the determinant of A is one. The condition on the coefficients A%g also states that 7,3 may be
regarded as the components of a constant second rank symmetrical covariant tensor.

Consider now any contravariant vector V#, and define V), by V,, = n,, V", ie., Vo = VOovi=-V,Vh=
—V?2, V3 = —V3. It is then easy to see that V, transforms as a covariant four-vector. Thus the tensor 7,,
can be used to ‘lower’ a contravariant index, thereby giving a covariant index. In an exactly similar way, we
may define the constant second rank symmetrical contravariant tensor with components n* by

=9 -L n=v#0;

{+1, p=v=_0;
0, p#v.

This tensor can be used to ‘raise’ a covariant index.
Note also that U - V = U,V®, which suggest arranging the components of a covariant vector as a
row-matrix (Up Uy Us Us), and then the scalar product between the two vectors is also the matrix product

VO
Vl
V2
V3

U-V=UpVP =UsVP =(Uy U Uy Us)

Because the tensor 7, also enters into the formula
ds? = dxtny,de”,

it is called the metric tensor. In special relativity it is constant, and space-time is flat. But in general
relativity the metric tensor is not constant; one has

ds® = dat g, (z)dz"”,

and the metric tensor g, determines the curvature of space-time. Constructed from the metric tensor and
its derivatives is a tensor G, which is determined through Einstein’s equations

G =Ty

in terms of the density of energy and momentum which appear as the components of the stress-energy-
momentum tensor T},,. The constant x equals 87G/c, where G is the (Newtonian) gravitational constant.



