MSci 4261 ELECTROMAGNETISM
LECTURE NOTES III

In this section of the notes we will discuss the simplest light waves (plane waves) in simple non-conducting
media and review the concepts of polarisation and dispersion.

3.1 Plane Waves

Recall Maxwell’s equations in the absence of sources -

V.-D=0,
oD
VXH_§7
V.B=0,
0B
VXE__W'

Assume we have uniform isotropic linear media, for which D = ¢E,B = yH, and write the electric and
magnetic fields as . ' . '
E(X, t) — Eerkn'x_Wt, B(X, t) — Boezkn-x—zwt’

where Eq and By are constant vectors and n is a constant unit vector. Then Maxwell’s equations are satisfied
provided that (Exercise: prove this)
k? = pew?,
n-Eyg=0, n-Bg=0,
Bo = /pe(n x Eo)

(we scale k so that n is of unit length). These conditions mean that firstly, the electric and magnetic fields
are perpendicular to the direction of propagation of the wave n, ie this is a transverse wave. Furthermore,
the electric and magnetic fields are perpendicular to each other (from the last equation). Also, ¢cB and E
have the same magnitude for these waves in the case of free space (for which /lig€g = 1/c). This follows from
taking the vector norm of the last equation, and using the above facts. It is straightforward to show that the

energy flow per unit area per unit time is given by %E x B = v/€/u|Eq - Eg|n and that the time-averaged
energy density is (¢E? + %Bz) = €|Eg - Eg|, with the speed of energy flow thus being v = 1/,/ne€, the
phase velocity. (The phase velocity is defined to be v = ¥ = 1/,/i€ = ¢/n, and the index of refraction n is

_ [
n= uozo')

3.2 Polarisation

Using the results of the section above, we introduce a set of real mutually orthogonal unit vectors
(e1,ez,n), where e; is parallel to Eg and e, is parallel to Bg. Then we may write the solution discussed
above as

E:elEO, BZEQVHCE(),

where Ey = |Eg|. We note that we may have alternatively written
E =eE),, B = —e;Juck,

as another solution of Maxwell’s equations (this is just a 90° rotation of the first solution, with a different
constant Ej). The first solution above is described as a linearly polarised wave, with polarisation vector
e1, since the electric field is always in the e; direction. Note that, by definition, the plane or direction of
polarisation of a wave equals the plane or direction of the electric field E. Similarly, the second solution is
linearly polarised with polarisation vector es. We can combine the two plane waves to form the most general
homogeneous plane wave propagating in the direction k = kn,

E(X, t) = (e1E1 + ezEQ)eik'x_i“’t,
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with the amplitudes Fp, Es constants. Allowing these constants to be complex permits phase differences
between waves of different polarisations. For example, consider the solutions

E(x,t) = Fi(e1 +iey)el >t

The physical electric field (which is defined here to be the real part of the solution) is then constant in
magnitude, but sweeps out a circle with frequency w as time evolves (at a given point in space). This is
because ReE = Eje; cos(wt) + Eqessin(wt). This is a circularly polarised wave (with positive helicity, since
the rotation is clockwise for an observer facing the oncoming wave). In general there is a four parameter
family of polarisations, described by the Stokes parameters. These describe the helicities (positive and
negative) and the linear polarisations in the two directions perpendicular to the waves’ motion.

3.3 Dispersion

Dispersion means that the effect of a medium on light traversing it depends on the frequency of that
light. In the above we implicitly assumed that the parameters p, € were real and constants. This is thus the
dispersion free case. As we saw, in this case, waves travel without distortion. In reality, all matter exhibits
dispersion, with different frequencies of light being affected differently by the media.

As a simple model for the physics of dispersion, consider the model of matter as molecules localised at
sites. An applied electric field produces an induced electric dipole moment in each molecule. Suppose that
the electrons in each molecule are bound under the action of a restoring force F = —mw?x, with m the mass
of the charge and wq the oscillation frequency. The equation of motion for the electron is

d*x dx N e

— + 7 +twyx = ——E(x,t

dt2 ’y dt 0 m ( Y )

(v is the damping force, —e the charge on the electron, the relative permeability has been taken to be one,
and this is for small oscillations and magnetic forces). Assuming time dependence of e~ ie x = xge~ ¢,
we have the dipole moment for an electron as

2
p=—exg = %(wg —w? —iwy) E.

Hence the dielectric constant € = (1 + xe)€o is given by

(@) +€2 1
ewy=e+———5——.
T mwE — w? —iwy

(Recall that p = €p)xE defines x..) This formula is the basis for a good description of the atomic contribution
to the dielectric constant. Note that this € is now dependent upon the frequency w. wy is called the resonant
frequency.

Typically, v is small in comparison to the frequency wp, so that the imaginary part of € is small. In
the normal case there is more than one resonant frequency (eg due to more than one electron or molecule).
Then, for frequencies below the smallest resonance, €/¢g is greater than one — if w+y is small, then if w < wg
we have

As one increases frequency past resonances more negative terms appear and €/ey eventually becomes less
than one. In the neighbourhood of a resonant frequency, €/€y is dominated by a large, purely imaginary
term — as w increases to wg, we have

This corresponds physically to dissipation of energy from the electromagnetic field into the medium, and is
called resonant absorption. (If the imaginary part of e(w) is negative, the opposite occurs, and the medium
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gives energy to the electromagnetic wave, as occurs with lasers, for example.) Changes in the real part of
e(w) are dispersion, described as normal when it increases and anomalous when it decreases.
3.4 Some Results from Fourier Analysis

For use in the next section we here recall some results from Fourier analysis. Given a suitably well-
behaved function D(x,w), its Fourier transform (in t) D(x,t) is given by

1 [ .
D(x,t) = ﬂ/ D(x,w)e” ! duw.

The functions et form an orthogonal basis, satisfying the condition
1 oo

— et gy = §(t — '),
21 J_
where §(t) is the Dirac delta function which satisfies

/ - ) f(tydt = F(t)

for any function f(t). Using these results, one can prove that the inverse Fourier transform is given by

D(x,w):/ D(x,t)e™t dt.

The convolution theorem in Fourier analysis gives an expression for the Fourier transform H (t) of the product
of two functions f(w)g(w), in terms of the transforms F'(t), G(t) of the functions f and g. This formula is

Ht) = /_ T F@)G( - )dt

3.5 The Kramers-Kronig Relations

The dependence of €, and hence of the refractive index n on the frequency w means that light of different
colours propagates with different speeds, and this leads to the dispersion of light (the separation of colours
by a prism for example). What we have is

D(x,w) = eoer(w)E(x,w)
This implies that

(o]
D(x,t) = egE(x,t) + 60/ G(r)E(x,t — 7)dr,
—0o0
where we have introduced

1 [ ;

- , —1le W7 .
G(r) = o- 1 o)~ 1
with a single oscillator electron (as discussed above):

As a model for the frequency dependence of €,, consider what happens if the medium is made of molecules

(wp =

2
w
=1+ ——
r Wi —w? —iw
e?/meg). Then we have
2 oo —iwT
w e
G(r) = —P/ — dw.
@ 21 J_ oo wE — w? —iyw



The integral may be evaluated by the usual method of completing a contour in the complex plane; the
integrand has poles at w = wy = —% + wg where wf = wf — 7?/4. These poles lie in the lower half of
the complex w-plane. For 7 < 0, the factor e=*7 tends to zero along a semi-circle at infinity in the upper
half-plane, and since there are no singularities in the upper half-plane, taking as contour of integration the
familiar one composed from the real axis and the arc at infinity in the upper half-plane, we conclude that
for 7 < 0, G(r) = 0. On the other hand for 7 > 0 we must close the contour in the lower half-plane to get
convergence on the arc at infinity, and the contour then encloses the poles of the integrand (in the negative
sense, which introduces an extra minus sign), giving with use of the residue theorem

G =2

2 w—wi)(w—w-)
2 — W4T —iw_T
= —w—P(2m') [ c +—° ]
2m —(wy —w-)  —(w- —wy)
9 iy i
= 22 2ni)e= -0/ £ R L€ "‘””]
2w —QwR QwR
=wle /2 Smw“;RT,
for 7 > 0. Putting these results together
Glr) = wpe P (+)

The details are not so important as the presence of the factor 8(7) which is clearly still present even in a more
sophisticated model in which there would be a sum over similar terms (many oscillators, each contributing
a term as above with an oscillator strength), or indeed in the full quantum mechanical treatment (which in
effect gives an explanation of the oscillator strengths).

There is a ‘non-locality’ in time in the relation between D and E by of order y~! ~ 1072 sec. for a
typical spectral line; +y is the natural line width. The factor 8(7) is essentially independent of the model,
and it ensures that the response of the dielectric is causally related to the E-field,

1

D(x,t) = E(x,t) + /00 G(1)E(x,t — 1) dr,
€0 0

since the lower limit of the 7-integration may be taken as 0, not —co. We have G(7) ~ e~77/2 with v acting
like a damping force. For 7 > 1/v, G is damped, and for times up to 7 ~ 1/, E(t — 7) affects D(t). This
then means that

S .
er(w) =1+ / G(r)e™ dr
0
(this is just the inverse Fourier transform). Because G(7) is real, it is easy to see that
er(—w) = [e-(w")]"

We also see that €, is an analytic function of w in the upper half-plane (from equation (*) above). The
analyticity of €,.(w) may be extended to Sw > 0. As ¢, — 1 is analytic, the Cauchy theorem then allows us

to write (for any z inside C)
1 wh)—1
e(2) =1+ —% de'
2 Jo W —z

in which the contour of integration can be taken to be the familiar contour made up from the real axis and
a semicircle at infinity in the upper half-plane. The arc at infinity makes no contribution to the integral,
because €, — 1 — 0 sufficiently fast, and one has, for any z with Sz >0
1 [ eW)-1

e(z) =1+ —

- - du'.
2mi J_o W' — 2
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We take z = w + i€, € > 0, and deduce

1 [ e(w)—1

e—0 o W —w — i€

Now we use o o
lim L),dm:P/ M-1-2'7Tf(ﬂ?70),
=0 J_ o T — xg — i€ oo T — g

where P [ denotes the Cauchy principal value integral (recall the definition of this as P fab f(z)dx =
lims_o+ ([ i (z) dz + f s f(x) dz), where the limit is well-defined). Thus

)—1
er(w) =1+ — P/ (@)1 dw'

or separating real and imaginary parts

\ser d )

Rep(w) =14 — P/

P/ %erl ~1
w —w

If we use also the previous result on € which amounts to

Rer(—w) = Rep(w)

Ser(—w) = —Ser(w)
there follows the Kramers-Krionig relations
* W'Se (W)
Re,(w) =1+ — P Rt dw
—w
Rer(w') — 1
e (w) = —?P/0 7 duw'

which had an important influence on the development of quantum mechanics, and which in their generalised
form continue to be of importance in studies of high energy physics. Because in the optical case they give
relations between the real part of €., which determines dispersion, and the imaginary part which determines
absorption, (c.f. section (3.3)) these relations and their generalisations are called dispersion relations; they
are a consequence of analyticity (here of €,.), which in turn is intimately related to the causality of the physical
process studied.



