
MSci 4261 ELECTROMAGNETISM

LECTURE NOTES I

1.1 Historical Background

This course will deal with electromagnetism. This is currently understood as part of the electroweak the-
ory, unifying the weak nuclear and electromagnetic forces, which in turn is part of the Standard Model which
also includes the strong nuclear force mediated by quarks. This model has so far been extremely successful
in predicting phenomena up to energies of more than 100GeV. The most successful part of the Standard
Model, and the most successful theory in history, is however Quantum Electrodynamics. Its prediction of
the magnetic moment of the electron, for example, has been proved correct to at least twelve significant
figures (writing the gyromagnetic ratio g in terms of the quantity a via g = 2(1 + a), the experimental and
theoretical values are aexp = .001159652188... and atheory = .001159652188..., where there are uncertainties
only in the last digit of each [1]).

The history of the development of the understanding of electric and magnetic phenomena is intimately
linked with the development of physics, and indeed science [2]. The ancient Greeks were already aware of the
properties of amber (ηλεκτρσν) - that when rubbed it attracts light bodies. They also knew that magnetic
iron ore (η λιθσζ µαγνητιζ) attracted iron.

The first comprehensive study of electricity and magnetism was presented in 1600 by William Gilbert, a
physician to Queen Elizabeth. He proposed that the earth is a magnet, explaining the properties of compasses
(which had been known since at least the 12th century). Gilbert found that friction causes forces in many
substances other than amber, including glass, sulphur, sealing wax and precious stones. He called this an
electric force. He further noted the differences between electricity and magnetism. Electricity was caused by
friction, seemingly attracted everything, was blocked by screens or water, and caused no definite patterns in
attracting other objects. In contrast, magnetism was not affected by friction, only attracted certain other
materials, was not blocked by screens or water, and also created definite patterns of attraction (eg using
iron filings). Gilbert was familiar with the humours of medicine (derived from the Greeks) - phlegm, blood,
choler and melancholy - and of the theory of how the effluvia of such humours caused medical conditions.
He proposed a similar explanation of electric force as being due to the effluvium of a humour - an influential
idea of fluid flow being relevant to electricity. Note that this also contains the important idea of there being
no action at a distance.

By the 18th century it was found that there were two forms of electricity - called vitreous (eg produced
by glass) and resinous (eg from amber). This was explained in terms of a superfluity or deficiency of electric
fluid, together with the crucial idea of conservation of fluid (charge) in any transference of electric substance.
Already by 1766 it was found that the electric force obeys an inverse square law. This was argued by
Priestley, who noted that for an electrified hollow metallic vessel there was no charge on the inside of the
vessel, nor any force acting inside. This was precisely like the then known behaviour of gravity. (The analogy
with gravity also led to the proposal of an electric potential φ, related to the electric field E by E = −∇∇∇φ,
with ∇∇∇2φ related to the charge density.)

It was the 19th century which saw the development of classical electrodynamics as we now know it.
This was due to the work of many people; the two contributors that I will mention here are Faraday and
Maxwell. In 1812 Michael Faraday was a 21 year old bookbinder’s assistant. He used to read the books
which he was binding, and attend popular lectures. Prompted by some of these books and lectures, he wrote
to Sir Humphrey Davy at the Royal Institution, expressing interest in modern developments in electricity
and magnetism, and hoping to get any sort of work there. Davy took him on, and to cut a long story
short, by 1829 Faraday had succeeded him as Director. Faraday had the idea of lines of magnetic force,
filling space around a magnet, with the direction of the force along the lines and the intensity of the force
increasing with the number of lines per unit area perpendicular to the lines. The magnetic field strength B
was to be thought of as the velocity of an incompressible fluid. Faraday discovered that a changing magnetic
field would induce a current in a wire - thus linking electricity and magnetism. Maxwell, born in 1831,
was inspired by Faraday’s work and ideas. These led him to formulate a unified theory of electricity and
magnetism which was encapsulated in his celebrated equations.
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1.2 Units and Fundamental Constants
Any more than cursory consideration of the question of the definition of units will reveal that this is a

subtle issue, and we will make only very brief comments here. In this course we will mostly use the SI system
of units (see an Appendix of Jackson for a fuller discussion of units). In this system, the unit of mass M is
the kilogram, which is defined to be the mass of a certain metal bar in Sevres, France. The unit of time T is
the second, defined in terms of a certain number of caesium electron transition cycles. Length L is defined in
units of the metre, which is defined as the distance travelled by light in 1/299792458 th of a second. Notice
that hence by definition the speed of light is exactly c = 299792458 metres per second. Finally, current I is
defined in units of the (absolute) ampere, an ampere being that current in two parallel infinite conductors
one metre apart which generates 2 × 10−7 Newton metres−1 of force between the wires.

It is further convenient to define the constants

µ0 = 4π × 10−7MLT−2I−1

and

ε0 =
1

µ0c2
= 8.854× 10−12ML3T−4I−2.

The cgs system of units is also used in some other sections of Jackson.
As far as fundamental constants are concerned, apart from the fixed quantities c, µ0, ε0 defined above,

we will use Planck’s constant h = 6.626 × 10−34 J.sec, the electron charge e = 1.60 × 10−19 Coulombs, and
the electron mass me = 9.11 × 10−31kg.

1.3 A Reminder of Vector Calculus

To formulate Maxwell’s equations most succintly, we will need the language of vector calculus. We will
use rectilinear coordinates (x, y, z), and partial derivatives ∂

∂x , ∂
∂y , ∂

∂z . A scalar field φ(x, y, z) is a function of
the coordinates (and possibly also of time t). A vector field V is a vector whose components are functions, so
that V = (Vx, Vy, Vz), with each of the components Vx, Vy and Vz being functions of x, y and z (and possibly
t). The vector of derivatives ∇∇∇ = ( ∂

∂x
, ∂

∂y
, ∂

∂z
), called del or nabla, will play an essential role. From a scalar

field φ we may form a vector field given by

gradφ = ∇∇∇φ = (
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z
).

From a vector field V we may form the scalar field

divV = ∇∇∇ ·V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
.

Finally, from the vector field V, we may form another vector field

curlV = ∇∇∇× V = (
∂Vz

∂y
−

∂Vy

∂z
,
∂Vx

∂z
−

∂Vz

∂x
,
∂Vy

∂x
−

∂Vx

∂y
).

Some identities are
div curlV = ∇∇∇ · (∇∇∇× V) = 0,

curl gradφ = ∇∇∇×∇∇∇φ = 0,

∇∇∇ · (φV) = V ·∇∇∇φ + φ∇∇∇ · V,

∇∇∇× (φV) = (∇∇∇φ) × V + φ(∇∇∇× V),

∇∇∇× (∇∇∇× V) = ∇∇∇(∇∇∇ ·V) −∇∇∇2V

(recall also that a × (b × c) = (a · c)b − (a · b)c for any vectors, or vector fields, a,b, c).
There are also some important relations involving integrals. Consider first a closed region of space

V surrounded by a boundary surface S. Let n be a unit vector normal to the boundary surface, dS the
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infinitesimal area element on the boundary (with dS = ndS), and A a vector field. Then we have Gauss’
law: ∮

S

A · dS =

∮
S

A · n da =

∫
V

∇∇∇ · A d3x.

Now consider a different surface S which has a boundary loop C. If dl is the infinitesimal line element along
C, then we have Stokes’ theorem: ∫

S

(∇∇∇× A) · n dS =

∮
C

A · dl.

Further identities and theorems can be found in the textbooks, for example inside the front cover of Jackson.
The above two equations have simple interpretations in terms of the geometry of vector fields - for the

first, if ∇∇∇ · A = 0 in some region V with boundary S, then
∮

S
A · dS = 0, which means that the flux of the

vector field A into the surface S is equal to the flux out of the surface, or in other words, that there are no
sources of flux in the region V . As for the second equation, from Stokes theorem, one sees that if a vector
field A satisfies ∇∇∇×A = 0 on a surface S with boundary curve γ, then

∮
γ
A ·dl = 0, which means that there

are no loops of flux of A - it is ‘irrotational’. (dl = tdl, where t is the unit tangent vector to the curve and
dl is the infinitesimal length element.)

To motivate the introduction of Maxwell’s equations below, let us note that, modulo some subtleties,
you can fully specify a vector field A by giving ∇∇∇ · A and ∇∇∇ × A (see Jackson, Chapter 6, page 241 for a
discussion). To see this, firstly note that you can write A = Ad +Ac, with ∇∇∇ ·Ad = 0 and ∇∇∇×Ac = 0. (This
is true up to the addition of a term ∇∇∇Φ with ∇∇∇2Φ = 0, but for suitable regions and boundary conditions this
has a unique solution.) This result is a special case of a general result, the Hodge decomposition theorem,
which splits a differential form into closed, co-closed and harmonic pieces - see, for example, M. Nakahara,
Geometry, Topology and Physics, Institute of Physics Publishing 1990, Section 7.9.

Then, equivalently, given ∇∇∇ · A you can find Ac, and given ∇∇∇ × A you can find Ad (the integration
constants involved being fixed by suitable boundary conditions). Thus, if we know the div and curl of a
vector field, then it is fully specified - so to determine the electric and magnetic fields we need to find the
right equations for their div and curl- and these four equations are precisely Maxwell’s equations.

1.4 Maxwell’s Equations

Thus we turn to Maxwell’s equations, which present a unified description of electricity and magnetism.

1.4.1 In Vacua

We saw above that the analogy between electrical force and gravitational force led to the introduction
of an electric potential φ, related to the electric field E by E = −∇∇∇φ. The electric field gives the force on a
unit charge, and one can find the spatial surfaces where the magnitude of the force is the same - these are
exactly the surfaces where φ is constant - equipotential surfaces.

Following this gravitational analogue, ∇∇∇ · E = −∇∇∇2φ must be related to the charge density ρ, which is
zero in a vacuum. This leads to the first of Maxwell’s equations in a vacuum:

∇∇∇ · E = 0.

The magnetic analogue of the above equation is

∇∇∇ · B = 0,

where B is the magnetic field. Faraday found that a changing magnetic field induced an electric field,
according to his Law of Induction:

∇∇∇× E = −
∂B

∂t
.

The magnetic equivalent of this is

∇∇∇× B =
1

c2

∂E

∂t
.
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(The term involving ∂E

∂t
was introduced by Maxwell and called the displacement current. Given the law of

induction, the equation above is a consequence of special relativity, as we will see later.) We have introduced
a constant, expressed as 1

c2 , in the above equation. In 1849, Kohlrausch and Weber found experimentally
that the constant c was equal to 3.1 × 1010 cm/sec.

We will keep the equations ∇∇∇ · E = 0,∇∇∇ · B = 0 in the non-static case, where the fields may vary with
time. Thus, Maxwell’s equations in a vacuum are

∇∇∇ ·E = 0, ∇∇∇× B =
1

c2

∂E

∂t
,

∇∇∇ ·B = 0, ∇∇∇× E = −
∂B

∂t
.

Note that these equations are consistent with the vector calculus identity ∇∇∇ ·∇∇∇×V = 0, for any vector field
V – as one can see by taking the divergence of the second and fourth equations and using the first and third.

Taking the curl of the equations involving the curls of E and B, one finds that

∇∇∇2E =
1

c2

∂2E

∂t2
,

∇∇∇2B =
1

c2

∂2B

∂t2
.

These are wave equations - for example, E = (cos(x − ct), 0, 0) is a solution of the first equation. The wave
velocity is given by the constant c, which we saw was known at that time to be a number near to 3.1× 1010

cm/sec. The speed of light had also been measured during this period - for example, Fizeau in 1849 found
the value 3.15 × 1010 cm/sec, using an apparatus with a spinning toothed wheel and mirror.

Thus, the constant in the wave equations of electromagnetic theory was found to be very close to the
speed of light. Maxwell described the next step: “We can scarcely avoid the inference that light consists
in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena”.
This conclusion was one of the great achievements of nineteenth century science.

1.4.2 Sources

Now we turn to the effects of sources of the fields. Consider first the introduction of electrostatic sources,
ie, an electric charge distribution which is constant in time. If the charge is distributed according to a charge
density ρ(r), then the first of Maxwell’s equations becomes

∇∇∇ ·E =
1

ε0
ρ,

for a constant ε0 which will be discussed shortly. The corresponding potential Φ, with E = −∇∇∇Φ, satisfies

∇∇∇2Φ = −
1

ε0
ρ

(this is exactly analogous to Newtonian gravity). We note that a solution to this equation is

Φ(r) =
1

4πε0

∫
ρ(r′)

|r− r′|
dV,

where the integral is over all space. To see this, note that (with r = |r|)

∇∇∇2 1

r
= −4πδ3(r) (∗).

A not very precise proof is by the following argument - firstly, when |r| %= 0, one can prove the above directly
by simple computation. Secondly, if one integrates the left-hand side of the above equation over a unit ball
B, with bounding two sphere S2, then one finds that

∫
B

(∇∇∇2 1

r
) d3x =

∫
S2

∇∇∇(1/r) · dS = −

∫
S2

1

r3
r · dS = −

∫
r=1

r2

r4
dΩ = −4π
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(dΩ is the unit solid angle). The two properties of the left-hand side of equation (*) just proved are those
shared by (and partially defining) the function on the right-hand side of that equation. (A more complete
argument proving this relation can be given.)

For a point charge Q, located at the origin r = (0, 0, 0), the charge density is given by ρ(r) = Qδ(r),
and from the properties of the delta function we have (with r = |r|)

Φ =
1

4πε0

Q

r
, E = −∇∇∇Φ =

1

4πε0

Qr

r3
.

In our SI units, ε0 = 8.854 × 10−12C2N−1m−2, and is called the permittivity of free space.
Since there are no magnetic charges (see Section 1.5 below), we conclude that there are no source terms

to add to the equation ∇∇∇ · B = 0. However, electric currents do generate magnetic fields. An important
advance in understanding this was made by Biot and Savart in 1820. For a constant current I, flowing in a
straight wire oriented along the z axis, the following magnetic field was found to be generated:

B(r) =
µ0

2π

I

ρ
φ̂,

where we are using the standard cylindrical coordinates, with ρ the perpendicular distance to the z axis, and
φ the radial coordinate around the z axis, with unit coordinate vector φ̂. We have used B ·dl = µ0I

2π
1

ρ φ̂ ·dl =
µ0I
2π dφ.

The constant µ0, called the permeability of free space is given by 1.257 × 10−6NAmp−2. Integrating
around a closed path γ which encloses the wire, we find

∫
S

∇∇∇× B · dS =

∮
γ

B · dl =
µ0

2π
I

∫
dφ = µ0I = µ0

∫
S

J · dS,

where S is any surface whose boundary is γ, and J is the electric current density. From the above we can
see that we must have ∇∇∇×B = µ0J in this case. Finally, since there is no current of magnetic charges, there
will be no source term in the ∇∇∇× E equation.

This discussion motivates the final presentation of Maxwell’s equations in the presence of sources:

∇∇∇ · E =
1

ε0
ρ,

∇∇∇× B = ε0µ0

∂E

∂t
+ µ0J,

∇∇∇ · B = 0,

∇∇∇× E = −
∂B

∂t

(with c = 1√
ε0µ0

).

An important consequence of these equations is obtained by taking the divergence of the second equation
and using the first, giving

∇∇∇ · J +
∂ρ

∂t
= 0.

This expresses the conservation of electric charge. To see this, integrate the above relation over a volume
V , with bounding surface S, to find

∫
S
J · dS = − ∂

∂t

∫
V
ρ, expressing the equality of the charge leaving the

surface S with the change of the amount of charge inside. Another way to motivate the introduction of the
current term in the second of Maxwell’s equations above is that precisely this term is needed in order to
ensure that these equations imply the equation for the conservation of charge.
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1.5 Energy and Momentum

Like charge, energy is conserved. Thus, for electromagnetic fields there must be some energy density E
(analogous to electric charge) and energy current P (analogous to electric current). By conservation, these
must satisfy

∇∇∇ · P +
∂E

∂t
= 0, or

∫
S

P · dS = −
∂

∂t

∫
V

E .

This equation should follow from Maxwell’s equations.
A little investigation yields the following expressions (for the free space case):

E =
1

2
ε0E

2 +
1

2µ0

B2,

P =
1

µ0

(E × B).

The vector P is known as Poynting’s vector. This will be discussed further in later lectures. One can similarly
define a momentum density and current for the electromagnetic field, which will be done in a later lecture.

1.6 Magnetic Monopoles

A homework question asks which modifications of Maxwell’s equations would be required if magnetic
monopoles existed. A magnetic monopole is the magnetic analogue of an electric charge, and is a source of
magnetic field lines - ie if the magnetic charge of a magnetic monopole is g, then the magnetic field produced
by a magnetic monopole at the origin is given by

B(r) = g
µ0

4π

r

r3
.

One surprising consequence of the existence of magnetic monopoles is that this would imply a relationship
between the electric and magnetic charges of any pair consisting of an electric particle with charge e and a
magnetic monopole with charge g. This relationship is

ge =
1

2
nh̄c

where n is an integer. One way to derive this is by considering the angular momentum density in the
electromagnetic field. This is given by r × p where p is the momentum density alluded to in the section
above. For a set-up where an electric charge and a magnetic monopole lie at different points on the z-
axis, one finds that the angular momentum of the electromagnetic field has a z-component equal to −eg/c
(see [3] for example). Setting this equal to nh̄/2 for an integer n (using the quantisation of intrinsic angular
momentum in quantum mechanics), gives the equation above. Notice that this equation implies that g2/e2 =
(1/4)(ch̄2/e2)2 & (1/4)(137)2 & 5000, ie the force between magnetic monopoles is 5000 times stronger than
that between electric charges. So far, no magnetic monopoles have been found. A review of experimental
limits on monopole masses, and of some theoretical issues, can be found at http://uk.arXiv.org/abs/hep-
ph/0111062. Limits of at least some hundreds of GeV for monopole masses are argued for in this paper.
Magnetic monopoles play an important role in supersymmetric gauge theories and string theory. A review
of much of this subject can be found at http://arxiv.org/abs/hep-th/0609055.

One can also consider the possibility of dyons – particles carrying both electric and magnetic charges.
The quantisation condition for these turns out to be

e1g2 − e2g1 =
1

2
nh̄c.

Dyonic particles have proved to be important in recent studies of supersymmetric theories containing elec-
tromagnetism, via the study of duality. See the last set of lecture notes for some discussion of this.
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