
MSci 4261 ELECTROMAGNETISM

LECTURE NOTES X

10.1 The Lagrangian for a Charged Particle

Consider now the equation of motion for a (relativistic) charged particle in an externally applied elec-
tromagnetic field. We have

dp

dt
= q[E + u× B]

dW

dt
= qu · E

which implies
dUα

dτ
=

q

m
FαβUβ.

(We have now used W for the energy of the particle to avoid confusion with the magnitude of the electric
field). We would like to obtain this equation from the principle of least action. Consider first a non-relativistic
particle with kinetic energy T = 1

2
mu2 in a potential V (r). The Lagrangian is L = T − V = 1

2
mu2 − V (r).

We can think of this as being defined for any path r(t) with u(t) = ṙ(t),

L = L[r(t), ṙ(t)],

and then may define the action for any path r(t) connecting some initial point r1 = r(t1) to some final point
r2 = r(t2);

A =

∫ t2

t1

L[r(t), ṙ(t)] dt.

The action principle states that the action is stationary under variations of the path about the actual path
followed by the particle in its motion from r1 at t1 to r2 at t2. The proof is

δA =

∫ t2

t1

[∂L

∂r
· δr +

∂L

∂ṙ
· δṙ

]

dt

=

∫ t2

t1

[∂L

∂r
· δr +

d

dt

(∂L

∂ṙ
· δr

)

−
d

dt

(∂L

∂ṙ

)

· δr] dt

=

∫ t2

t1

[∂L

∂r
−

d

dt

(∂L

∂ṙ

)]

· δr dt

where at the last step we use δr = 0 at the end-points. The vanishing of the integral for arbitrary δr
satisfying the end-point condition is now equivalent to the statement of the Lagrange equations

d

dt
p =

∂L

∂r

where

p =
∂L

∂ṙ
.

These are indeed Newton’s equations for the case considered, since p is the momentum and ∂L/∂r = −∇∇∇V
is the force.

We now seek a relativistic generalisation. Since the condition δA = 0 must determine the same trajectory
independent of the reference frame, we require that A should be a Lorentz scalar. But if

A =

∫ t2

t1

L dt

=

∫ τ2

τ1

L
dt

dτ
dτ
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is to be a scalar, it follows that L dt
dτ

= γL must be a scalar. For a free particle this must furthermore be
independent of the position. But the only Lorentz scalar one can make out of the velocity alone is U αUα = c2.
So

γLfree = const.

To get the correct non-relativistic limit, this has to be −mc2, and then

Lfree =
−mc2

γ(u)
= −mc2

√

1 −
u2

c2
.

This indeed gives

p =
∂Lfree

∂u
= muγ(u)

and the equation of motion ṗ = 0.
For a slowly moving charged particle, the interaction with the electromagnetic field introduces a term

V = qΦ = qcA0 to the potential, and so leads to

LNR
int = −qcA0

as the expression for the non-relativistic approximation to the interaction part of the Lagrangian. To go
to the relativistic case, we try to find a Lorentz scalar to which this is an approximation, and then write
γLint = that Lorentz scalar. It is not hard to see that this has to be −qUµAµ, so that we are led to consider

γL = −mc2 − qUµAµ,

or

L = −mc2

√

1 −
u2

c2
− q(cA0 − u ·A).

The momentum canonically conjugate to r is

P =
∂L

∂u
= mγu + qA.

So in terms of the mechanical momentum p we have

p = P − qA.

One may then check that the Lagrange equations

d

dt
P i =

∂L

∂ri

do in fact give the correct equations of motion:

d

dt
P i = −qc

∂A0

∂ri
+ q

∑

j

uj ∂Aj

∂ri
,

so that

ṗi + q
(∂Ai

∂t
+

∑

j

∂Ai

∂rj

∂rj

∂t

)

= −q
∂Φ

∂ri
+ q

∑

j

uj ∂Aj

∂ri
,

which gives
ṗ = q[E + u × (∇∇∇× A)]

= q[E + u × B].
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10.2 The Hamiltonian

The Hamiltonian is defined by
H = P · u− L,

in which u has to be eliminated in favour of P. This leads to

H = (P − qA) · u + mc2/γ + qcA0

with

u =
P − qA

mγ

and

γ =
[m2c2 + (P − qA)2

m2c2

]
1

2

which leads directly to
H = [(P − qA)2c2 + m2c4]

1

2 + qcA0

= [p2c2 + m2c4]
1

2 + qcA0

from which one sees that the introduction of the electromagnetic field leads to the changes

p → P = p + qA

p0 = H/c → P 0 = p0 + qA0.

10.3 The Lagrangian for the Electromagnetic Field

For a single particle moving in a potential V (r), the equation of motion can be obtained from the
principle of stationary action

δA = 0

where the action is

A =

∫ t2

t1

L dt

and the Lagrangian is L[r(t), ṙ(t)] = T −V, T being the kinetic energy expressed as a function of the particle
velocity ṙ. For the principle of stationary action gives

δA

δr(t)
≡

∂L

∂r(t)
−

d

dt

∂L

∂ṙ(t)
= 0,

which is equivalent to Newton’s equation of motion. This generalises directly to a system of (finitely) many
degrees of freedom, with generalised coordinates qi(t) and velocities q̇i(t), when

L = L[qi(t), q̇i(t)],

A =

∫ t2

t1

L[qi, q̇i] dt,

δA

δqi(t)
≡

∂L

∂qi(t)
−

d

dt

∂L

∂q̇i(t)
= 0.

Our first problem will be to understand how this may be further generalised to the situation of a field theory
in which one has a continuous infinity of degrees of freedom (one – or a finite number – for every point in
space). A way to approach this problem is suggested by a familiar model of a solid, in which we think of
a ‘crystal lattice’ of atoms interacting with their nearest neighbours through some sort of elastic force, and
for good measure also acted on by some other potential. For simplicity this can be taken to start with in
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just one dimension. If we suppose that the displacement of the ith atom is φi, the potential energy, kinetic
energy and Lagrangian are then

V =
∑

i

[
1

2
k(φi+1 − φi)

2 + v(φi)]

=
∑

i

[1

2
ka2

(∆φi

a

)2

+ v(φi)
]

.

T =
∑

i

1

2
mφ̇2

i .

L = T − V

→
∫

dx
[1

2

m

a

(∂φ

∂t

)2

−
1

2
ka

(∂φ

∂x

)2

−
1

a
v(φ)

]

.

At the last step we have suggested how to go to a continuum limit, where now we let a → 0, keping finite
m
a

, ka and v
a
. This is in fact the appropriate way to model a continuous elastic medium. It also suggests

that for a field theory we take as the Lagrangian an integral over what is called the Lagrangian density,

L =

∫

d3xL
[

φ(x, t),∇∇∇φ,
∂φ

∂t

]

.

We then have for the action

A =

∫

dt

∫

d3xL

and the principle of stationary action δA = 0 gives the Euler-Lagrange field equation:

d

dt

(∂L
∂φ̇

)

=
∂L
∂φ

−∇∇∇
( ∂L

∂∇∇∇φ

)

,

which we can rewrite in a suggestive fashion by noting that since ∂µ = (1
c

∂
∂t ,∇∇∇), with L = L(φ, ∂µφ) the

Euler-Lagrange equation becomes

∂µ
{ ∂L

∂(∂µφ)

}

=
∂L
∂φ

.

This then is the field equation. For example, if

L =
1

2
(∂µφ)(∂µφ) −

κ2

2
φ2,

as might be suggested by our model of an elastic medium, the field equation is

∂µ(∂µφ) = −κ2φ

or
&'φ = −κ2φ,

which is the Klein-Gordon equation. Note that if φ is a Lorentz scalar, L is also a Lorentz scalar, and the
resulting field equation is Lorentz invariant. Conversely , to get a Lorentz invariant field equation, we must
start from a Lorentz invariant action, and this means in turn that L must be a Lorentz scalar.

Let us turn now to the electromagnetic field. The field variable will then not be the scalar field φ of
our previous example, but will be the 4-vector Aα. The Lagrangian density depends on the derivatives of
the fields, so instead of ∂µφ it will involve ∂βAα. In the previous example we had introduced (∂µφ)(∂µφ) as
a scalar, quadratic in the field gradients. On general grounds we expect that there should be a term in the
Lagrangian of this form, and so are led to seek a Lorentz scalar quadratic in the derivatives ∂βAα. Just as a
Lorentz scalar Lagrangian density leads to Lorentz invariance of the field equations, so also gauge invariance
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of the Lagrangian density will lead to gauge invariance of the field equations. So we need to find a gauge
invariant Lorentz scalar quadratic in the field derivatives. We have already encountered two such, namely
FαβFαβ and Fαβ ∗Fαβ ; but the latter of these is in fact only a pseudo-scalar. This motivates the choice

L = const F αβFαβ

for the electromagnetic field in the absence of sources jµ. If sources are present we expect to have to subtract
from this the potential energy of the interaction between the sources and the electromagnetic field, so have

L = const F αβFαβ − jµAµ,

(the interaction term being just the generalisation to a general source of what we have already discussed for
the interaction of a single charged particle with the electromagnetic field) wherein Fαβ ≡ ∂αAβ − ∂βAα. It
might be objected that the interaction term is not gauge invariant; indeed under a gauge transformation it
changes by jµ∂µχ. But this differs from the total divergence ∂µ(jµχ) (which makes no contribution to the
field equations anyway, and so can be dropped) by χ∂µjµ, which vanishes because the current is conserved.
There is thus illustrated the very important and deep connection between the gauge invariance of the theory
and the conservation law.

The Euler-Lagrange equations which follow from the choice L = kF αβFαβ − jµAµ are

∂β

( ∂L
∂Aα,β

)

=
∂L

∂Aα
= −jα.

(We have introduced the very convenient notation f,β for ∂βf = ∂f
∂xβ , so that Aα,β means ∂βAα = ∂Aα

∂xβ ).
But

∂L
∂Aα,β

= k
∂

∂Aα,β
(FρσηρµησνFµν)

= 2kF µν ∂

∂Aα,β
(Aν,µ − Aµ,ν)

= 2kF µν(δα
ν δβ

µ − δα
µ δβ

ν )

= −4kF αβ,

so we have
−4kF αβ

,β = −jα,

which is to be compared with the field equation

Fαβ
,β = −µ0j

α.

This fixes the normalisation constant k = − 1
4µ0

. The Lagrangian density can also be written as

L = −
1

4µ0

FαβFαβ − jµAµ

= −
1

2µo

(

B2 −
E2

c2

)

− jµAµ

=
1

2

(

ε0E
2 −

1

µ0

B2
)

− jµAµ.

10.4 The Hamiltonian for the Electromagnetic Field

The Hamiltonian (which generalises H =
∑

i piq̇i − L) is

H =

∫

d3x
∂L

∂Ȧµ
Ȧµ − L
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since the momentum conjugate to Aµ is ∂L
∂Ȧµ

. Note that since the time derivative of the component A0 does

not enter into the Lagrangian, the momentum conjugate to A0 vanishes identically; this is a reflection of the
fact that not all of the four components of Aµ are independent, and only three need be determined by the
equations of motion, with A0 being given from the gauge condition, for example ∂µAµ = 0. The momentum
conjugate to Ai, (where i = 1, 2, 3) is ∂L

∂Ȧi
= −ε0Ei, and we then find

H = −
∫

d3x ε0E · Ȧ− L

=

∫

d3x{ε0[E · (E +∇∇∇Φ)] −
1

2
ε0[E

2 − c2B2] + ρΦ − A · J}

=

∫

d3x{
1

2
ε0[E

2 + c2B2] − A · J − Φ[∇∇∇ · (ε0E) − ρ] +∇∇∇ · (ε0EΦ)}.

The last term is a divergence which makes no contribution to the (Hamilton) equations of motion. The only
other place where Φ occurs is in the penultimate term, and the corresponding Hamilton equation simply
ensures the vanishing of the expression which multiplies Φ, namely the Maxwell equation ∇∇∇ · (ε0E)− ρ = 0.
If this equation is imposed as a constraint, Φ may be eliminated altogether, and we have

H =

∫

d3x{
1

2
ε0[E

2 + c2B2] − A · J}.

In these remaining terms B = ∇∇∇× A, and the field variable is A, with conjugate momentum as previously
given, −ε0E. So the Hamiltonian has been expressed entirely in terms of the fields and the conjugate
momenta as is required. Hamilton’s equations, the analogues of ṗ = − ∂H

∂q
, q̇ = ∂H

∂p
, are

−ε0Ė = J − c2ε0∇∇∇× B,

Ȧ = −E−∇∇∇Φ.

And these are again Maxwell’s equations. [You might notice that the constraint equation ∇∇∇ · (ε0E) − ρ = 0
is consistent with the first of these because the sources satisfy the conservation equation ρ̇ + ∇∇∇ · J = 0, as
we have already remarked]

10.5 The Canonical Stress Tensor

We have introduced the Lagrangian density

L = −
1

4µ0

FαβFαβ − jµAµ

=
1

2
ε0(E

2 − c2B2) − jµAµ

with

L =

∫

L d3x A =

∫

L dt =
1

c

∫

L d4x.

Similarly we have

H =

∫

H d3x

with

H =
∂L

∂Aµ,0
Aµ,0 − L

=
1

2
ε0(E

2 + c2B2) +∇∇∇ · (ε0ΦE) − j ·A.
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This suggests the definition

T ν
λ =

∂L
∂Aµ,ν

Aµ,λ − δν
λL

=
1

µ0

FµνAµ,λ − δν
λL,

which is a tensor of which H is a component. This tensor is called the canonical stress tensor. We have

T 0λ = (H,ΠΠΠ),

with T 00 = H as given above, and

Πi = T 0i =
1

µ0c
{(E× B)i +∇∇∇ · (EAi) −

ρ

ε0

Ai}.

Let us recall that the energy density in the electromagnetic field is

u =
1

2
(E · D + B ·H)

=
1

2
ε0(E

2 + c2B2)

and the Poynting vector, which is the flux vector for electromagnetic energy, is

S = E× H

=
1

µ0

E× B.

Then

Πi =
1

c
Si +∇∇∇ · (cε0EAi) − j0Ai,

H = u +∇∇∇ · (cε0EA0) − j0A0 + jµAµ.

Suppose now that the electromagnetic fields are localised in some region, and that there are no sources.
Then integrating over that region

∫

T 00 d3x =

∫

[u +∇∇∇ · (cε0EA0)] d3x

=

∫

u d3x

= Ufield;
∫

T 0i d3x =

∫

[1

c
Si +∇∇∇ · (cε0EAi)

]

d3x

=
1

c

∫

Si d3x

= cP i
field.

Here Ufield and Pfield are respectively the total energy and momentum of the electromagnetic field in the
region considered.

Recall the conservation law
∂u

∂t
+∇∇∇ · S = −j ·E.

Since u and S are not components of a 4-vector, this is not in itself a covariant conservation law; but it does
indicate how we might find a covariant extension of it. We consider

∂αT αβ = ∂α

{ ∂L
∂(∂αAµ)

∂βAµ − ηαβL
}

= ∂α

[ ∂L
∂(∂αAµ)

]

∂βAµ +
∂L

∂(∂αAµ)
∂α∂βAµ − ∂βL.

7



Now use the Euler-Lagrange equations

∂α
∂L

∂(∂αAµ)
=

∂L
∂Aµ

,

to obtain

∂αT αβ =
∂L

∂Aµ
∂βAµ +

∂L
∂(∂αAµ)

∂β(∂αAµ) − ∂βL

which vanishes identically (use the chain rule for differentiation). Thus the covariant conservation law

∂αT αβ = 0

is a consequence of the equation of motion.
If this is integrated over the region containing the fields,

∫

∂αT αβ d3x = 0

=

∫

(∂0T
0β + ∂iT

iβ) d3x

= ∂0

∫

T 0β d3x + surface term.

The surface term vanishes (we have supposed the fields to be localised in some region), so what we have
obtained is

d

dt
Ufield = 0,

d

dt
Pfield = 0,

the conservation of the energy and of the momentum for localised fields in the absence of sources.

10.6 The Symmetric Stress Tensor

This is very pretty, but there are a number of objections:

(i) The electromagnetic energy and momentum ought to be covariantly defined as parts of a 4-vector;
we have implicitly been using a frame in which the observer is at rest.

(ii) H and ΠΠΠ differ from u and S even in the absence of sources (albeit by a divergence).

(iii) The tensor T αβ is not symmetrical. The significance of this arises from the wish to incorporate into
a covariant conservation law the conservation of the angular momentum of the electromagnetic field. Thus

Mfield =
1

c

∫

x × (E× H) d3x

=
1

cµ0

∫

x× (E × B) d3x

is conserved, and a local covariant generalisation of this would be

∂αMαβγ = 0

with
Mαβγ = T αβxγ − T αγxβ .

This requires
∂α(T αβxγ − T αγxβ) = 0,
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i.e.,
(∂αT αβ)xγ + T αβδγ

α − (∂αT αγ)xβ − T αγδβ
α = 0,

or using the previous result
T γβ − T βγ = 0.

(iv) On general grounds it is expected that T α
α = 0. This is related to the fact that the quanta of the

electromagnetic field, the photons, have zero mass, and likewise to the scale-invariance of electromagnetism
— these are technical points outside the scope of this course.

(v) If T αβ is to be of direct physical significance, it ought to be gauge invariant.

We seek to remedy these defects by modifying the tensor:

T αβ → Θαβ = T αβ − T αβ
D

in such a way that

a) Θαβ = Θβα Θ is symmetric

b) Θα
α = 0 Θ is traceless

c) Θ is gauge-invariant

d) ∂αΘαβ = 0 Θ is conserved

but

e)

∫

Θ0β d3x =

∫

T 0β d3x.

In the absence of sources, we had

T ν
λ =

1

µ0

FµνAµ,λ − δν
λL

=
1

µ0

{Fµν(Aµ,λ − Aλ,µ) + (F µνAλ),µ − Fµν
,µAλ}− δν

λL

= −
1

µ0

FµνFµλ − δν
λL +

1

µ0

(FµνAλ),µ.

So let us define

TD
ν

λ = −
1

µ0

(FµνAλ),µ.

We then have

Θνλ = −
1

µ0

[FµνF σληµσ −
1

4
ηνλFαβFαβ ]

which is clearly

a) symmetrical

b) traceless (use δα
α = 4)

c) gauge invariant, since it depends only on F µν

d) conserved in the absence of sources, since

TD
ν

λ,ν = ∂ν

[

−
1

µ0

(FµνAλ),µ

]

= −
1

µ0

(FµνAλ),µ,ν ,
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which vanishes because F µν is antisymmetrical in µ, ν whilst the partial derivatives are symmetrical. Thus

Θν
λ,ν = T ν

λ,ν = 0.

and

e) for localised fields, the space integrals of Θ0β and T 0β are equal, since

∫

Θ0β d3x −
∫

T 0β d3x =

∫

TD
0β d3x

= −
1

µ0

∫

(Fµ0Aβ),µ d3x

= −
1

µ0

∫

(F i0Aβ),i d3x

= −
1

µ0c

∫

∇∇∇ · (EAβ) d3x

which gives a surface integral which vanishes because E = 0 on the boundary, the fields being localised.
We are thus motivated to define the symmetric stress tensor Θαβ, even when there are sources present,

by

Θαβ ≡ −
1

µ0

[FλαFλ
β −

1

4
ηαβFµνFµν ]

for which

Θ00 =
1

2
ε0(E

2 + c2B2) = u

Θ0i =
1

cµ0

(E× B)i =
1

c
Si = cgi

Θij = −ε0{EiEj + c2BiBj −
1

2
δij(E2 + c2B2)}

= −[the Maxwell stress tensor].

This tensor thus combines the energy density u, the Poynting vector S (or the momentum density vector g),
and the Maxwell stress tensor (a three-tensor which gives the mechanical stress present in the electromagnetic
field, which is responsible for the ‘repulsion of lines of force’ described by Faraday) into a Lorentz covariant
tensor.

10.7 The Conservation Laws

To see what happens to the conservation law in the presence of sources, consider

∂αΘαβ = −
1

µ0

[Fλα
,αFλ

β + FλαFλ
β

,α −
1

2
FλµFλµ,

β ]

= jλFλ
β −

1

2µ0

[2FλαFλ
β

,α − FλµF β
λµ,].

Thus

∂αΘαβ − jλFλ
β = −

1

2µ0

[2FλµFλβ,µ − FλµFλµ,β ]

= −
1

2µ0

Fλµ[Fλβ,µ − Fµβ,λ − Fλµ,β ]

=
1

2µ0

Fλµ[F βλ,µ + Fµβ,λ + Fλµ,β ]

= 0,

10



where we make repeated use of the antisymmetry of Fµν and at the last stage of Maxwell’s homogeneous
equation.

Thus we have derived
∂αΘαβ = jλFλ

β ≡ −fβ,

where we have introduced the Lorentz force density fβ = F βλjλ = (f0, f). We have

f i = F iλjλ = F i0j0 −
∑

k

F ikjk = Eiρ + (j × B)i,

or
f = ρE + j × B;

and

f0 = F 0λjλ = F 0iji =
(

−
E

c

)

· (−j) =
E · j

c
.

These should be compared with
F = q(E + v × B)

and
F · v = E · (qv);

respectively the Lorentz force (i.e., the rate of change of momentum) of a charged particle and the rate at
which the field does work (i.e., the rate of change of the energy) on a charged particle. Thus the 4-vector f β

gives the rate of change of the energy and the momentum of the sources. In other words

∫

fβ d3x =
d

dt
P β

matter.

What this means is that
∫

(∂αΘαβ + fβ) d3x = 0

=

∫

(∂0Θ0β + ∂iΘ
iβ) d3x +

d

dt
P β

matter

=

∫

∂0Θ
0β d3x +

∫

Θiβni d2S +
d

dt
P β

matter

=
d

dt

[

P β

field + P β

matter
]

+ surface term,

where

P β

field =

∫

1

c
Θ0β d3x

=

∫

(u

c
,g

)

d3x

=

∫

(1

c
(energy density), momentum density

)

d3x,

and the surface term vanishes for a closed system. At the differential level, the conservation equation gives
(with β = 0)

1

c

(∂u

∂t
+∇∇∇ · S

)

= −
E · j

c
,

which is Poynting’s equation; and (with β = i)

∂gi

∂t
=

(

TMaxwell)ij
,j − (ρE + j × B)i,
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which expresses the fact that the rate of change of the density of momentum equals a contribution from the
Maxwell stress exerted by the neighbouring field and a term which is the ‘equal and opposite’ reaction to
the force exerted by the field on the sources.

10.8 The Field as an Ensemble of Oscillators

Consider an enclosure filled with electromagnetic radiation, but devoid of sources. The Hamiltonian is

H =
1

2
ε0

∫

d3x[E2 + c2(∇∇∇× A)2].

In a radiation gauge (divA = 0, Φ = 0), we have

H =
1

2
ε0

∫

d3x[Ȧ2 + c2(∇∇∇× A)2].

We may analyse the field into a superposition of normal modes

A(x, t) =
∑

λ

1
√

ε0

qλ(t)Aλ(x).

The field equation &'A = 0 implies for the normal mode potentials

∇2Aλ +
ω2

λ

c2
Aλ = 0,

whilst the amplitudes qλ satisfy
q̈λ(t) + ω2

λqλ(t) = 0;

the normal mode frequencies ωλ are as usual constants of separation of the t- from the x- variables. The
gauge choice implies that divAλ = 0, and the factor 1√

ε0
in the normal mode expansion is chosen for later

convenience. The functions Aλ(x) can be chosen to satisfy the orthonormality condition
∫

d3xAλ(x) · Aµ(x) = δλµ.

In terms of the normal modes, we have

H =
1

2
ε0

∫

d3x
[

(

∑

λ

1
√

ε0

q̇λAλ

)

·
(

∑

µ

1
√

ε0

q̇µAµ

)

+ c2
(

∑

λ

1
√

ε0

qλ∇∇∇× Aλ

)

·
(

∑

µ

1
√

ε0

qµ∇∇∇× Aµ

)

]

.

The last term may be manipulated as follows:
(

∇∇∇× Aλ

)

·
(

∇∇∇× Aµ

)

= Aλ ·
(

∇∇∇× (∇∇∇× Aµ)
)

+ a divergence which integrates to zero

= Aλ · [∇∇∇(∇∇∇ ·Aµ) −∇2Aµ]

= Aλ · (−∇2Aµ) since div Aµ = 0

= Aλ ·
ω2

µ

c2
Aµ.

Putting this into the previous expression for H gives H = 1
2

∑

µ[q̇2
µ + ω2

µq2
µ], or better to write

H =
1

2

∑

µ

[p2
µ + ω2

µq2
µ],

which is immediately recognised as the Hamiltonian for a system of simple harmonic oscillators. This was a
result familiar to Planck in 1900!
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