
Section 1.  
 
Dynamics  (Newton’s Laws of Motion) 
 
 
 Two approaches: 
 

1) Given all the forces acting on a body, predict the subsequent (changes in) 
motion.   

2) Given the (changes in) motion of a body, infer what forces act upon it. 
 

Review of Newton’s Laws: 
 
 First Law:  A body at rest remains at rest, 
   a body in motion continues to move at constant velocity, 
         unless acted upon by an external force.  
 

Note:  This is only true in an inertial frame.   
Example 1:  You are on a train with a ball on the floor.  The train 
accelerates.  What does the ball do? 
Example 2:   You observe the world from a rotating carousal.  All other 
objects are changing their velocities wrt you as you turn.  What forces 
must be applied to them to achieve this?  
 
 

 
Second Law:  A force acting on a body causes an acceleration of the body, 

      in the direction of the force, proportional to the force, 
         and inversely proportional to the mass.  
 
 

Note:  This is only true in an inertial frame. 
 

Express as 
m
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Example 1:  Force parallel to velocity. What does the body do? 
Example 2:  Force always at right angles to velocity. What does the 
body do?  
 
We define the linear momentum vmP 

= , so that  
 
 
 
 

We have two ways of measuring mass: 
Inertial method – apply a force and measure acceleration inertialm⇒  
Gravitational method – weight the object (no motion) gravm⇒  

dt
PdF
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 Later we will see that they are the same. 
 
Third Law:  To every action there is an equal and opposite reaction. 

 
 
Example 1:     
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Example 2:    A rocket engine generates the force thrustF


 
 and applies the force gasF  to the exhaust, 
 

And  gasthrust FF


−=  
 
 
 
 
 
 
 
Applications of Newton’s Laws of Motion 
 
 
Example 1:  Inclined Ramp 
 
An 8kg cart is pulled up a frictionless slope inclined at 20°.  Determine 
the force if the cart is to move 
  
a) With uniform motion, 
b) With an acceleration of 0.2  m s-2 up the plane.  
  
a)    Resolve forces parallel to surface, then N8.2620sin8 == gF  
 
b)    Hence 2.0820sin8 ×==− magF  , so F = 28.4N 
 
 

Upward force on 
mass is N


 

Downwards force on 
plinth is gmW 

=  



Example 1:   The Pulley 
 
A  weightless cord hangs over a frictionless pulley.  A mass of 1kg 
hangs at one end of the cord and a mass of 2kg at the other. Calculate 
a) the acceleration of the masses, 
b) the tension in the cord, 
c) the reaction (the upwards force) exerted by the pulley.  
 
Analysis:  String must be at constant tension T throughout. 
 Let upwards acceleration be positive.  
 Let string accelerate at a on 1kg side 
 Then for the 1kg mass,  

 mamgT =− , i.e.  agT =−  
 and for the 2kg mass 
  mamgT −=−  i.e. agT 22 −=−    
 

a) Eliminating T, we obtain a = g/3 
b) From either equation, T = 4/3 g 
c) Then the reaction is R = 2T = 8/3 g  

 
 

Now solve the same problem for masses m and m′  
 
 
 
 
 
 
Equilibrium of a Solid Body 
 
 
The static equilibrium of a solid body entails two distinct conditions:  
 
1)  The net force tending to accelerate it is zero  
 
 mEquilibriunalTranslatioofConditionF

i
i 0=∑


 

 Note:  All the forces do not have to go through the same point.  
A ladder leaning against a wall has reaction and friction forces at each 
end, which do not go through the centre or any other single point.   
 
2)  The net torque tending to rotate it is zero  
 
 mEquilibriuRotationalofConditionT
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 Note:  A body may be in translational equilibrium while out of 
rotational equilibrium.  It may also be in rotational equilibrium while 
out of translational equilibrium.  
 



Example:   A Loaded Bar 
 
A  weightless bar rests on two supports.  Several loads are hung from it  
 
 
 
 
 
 
 
 
 
 
Calculate the forces  FA and FB  
 
 
Analysis:   
 
1) Translational equilibrium, and note all forces are in y-direction. So 

forces simply sum to zero: 
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2) Rotational equilibrium, so total moment about any point is zero. 

Taking moments about A: 
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Example:   Ladder against Wall 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let the weight of the ladder be 16 kg, so that W = 160 N, and let it be 
at 60° (π/3 radians) to the ground. 
 
Find the forces acting at each end of the ladder 
Find the minimum coefficient of friction against the ground.  
 
 
Analysis 
 
Translation equilibrium:  Equate forces resolved in two axes 

FB = NA 
    W = NB = 160 N 
 
Rotational equilibrium: Take moments about B 
    W × ½L cos 60º = NA × L sin 60º 

⇒   NA = 80 cot 60º = 46.2 N 
 

Friction:   FB = NA  ≤ µS NB  
⇒ µS ≥ 46.2 / 160 ≈ 0.29 
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Assume wall is 
frictionless, i.e. FA = 0 



Frictional Forces 
 

Friction is due to interactions between the atoms of an object and those 
of a surface that it touches.  Microscopic roughness plays a role too.  
Macroscopic roughness is treated separately.   
 

There are two kinds of frictional forces: 

• Static Friction, when the surfaces are at rest 

• Kinetic or Sliding Friction, when the surfaces are in relative 
motion. 

 
In both cases, the frictional force opposes motion between the 

surfaces, and its magnitude is 
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where µS and µK are the coefficients of static / kinetic 
friction respectively. Often approximate to µS ~µK =µ. 

 

  Definitions:  

• F = µS N is the minimum force required to set in motion the 
surfaces in contact and initially at rest, when the normal 
force (contact force) is N.   

• F = µK N is the minimum force required to maintain the 
relative motion of the surfaces in contact, when the normal 
force (contact force) is N.   

 
Example:   Inclined Plane with Friction 

  Sliding Uphill: Resolving forces parallel to inclined plane, 

 and using F = ma, 

   Fpull – mg sin θ – µ N = ma    
 
 
 
 

Sliding Downhill: Resolving forces parallel to inclined plane, 

 and using F = ma, 

   Fpull + mg sin θ  –  µ N = ma    
 
 
 
 
 Just balancing, Fpull = 0 = a, then µ = tan θ 

Fpull = mg sin θ  +  µ mg cos θ + ma    

Fpull = – mg sin θ  +  µ mg cos θ +ma    

a is uphill acceleration. 

a is downhill acceleration 

a = 0 for 
uniform motion. 

In general, 



Acceleration with Varying Mass:  The Rocket 
 
 
A rocket at take-off has maximum mass (payload, structure and fuel) which 
decreases during flight as fuel is used.  This is a characteristic example of a 
varying mass problem. 
 
Let the rocket operate by ejecting exhaust at nozzle velocity ev   

at the rate 
dt
dm  (mass per unit time).  

At time t let the rocket have velocity )(tv  reltive to an inertial frame 
and mass )(tm . The exhaust mass dm that departs in the next time 
interval dt therefore has velocity evtvtv −=′ )()(  in the inertial 
frame. The quantity dm is an inherently negative quantity because 
the mass of the rocket changes by an amount dm. During dt a 
positive mass (–dm) of burned fuel is ejected from the rocket. 

Conserving momentum p = mv: 
 At time t,   )()()( tvtmtp =   
 At time t + dt dmvdvvdmmdttp ′−++=+ ))(()(  

   which expands to dmvvdmvdmmdvmvdttp e+−++=+ )(  
   The momentum is unchanged, so dmvmdv e−=  

   So acceleration is 
dt
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   Integrating this from initial conditions, at t = 0, v = 0, m = m0, 
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This is a very important equation for rocket designers.  It says that the nozzle 
velocity must be made as high as possible, and that the fuel must be as high a 
proportion of the mass as possible.  It implies that rockets should be multi-
stage.  

 
 
 
 



Work and Power 
 

Work is done when a force acts along a displacement.  The work is the energy 
required to achieve this.  

 
Example: A body mass m falls through a height h.  The work done by gravity 
is Fh = mgh.  
 
Only the component of force parallel to the displacement is relevant.  If the 
force is at the angle α to the displacement, the work is Fs cos α.  In vector 
notation, this is  

sFW  .=  
 If the path is curved, we may want the differential relationship, 

rdFdrFdW 
.=α= cos  

 
 
 Power is the rate of doing work.  

vF
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Kinetic and Potential Energy 
 
 

Consider amF 
=  - a force acting on a particle to accelerate it.  The work 

done is  
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 We define kinetic energy accordingly as 2½½ mvvvm =

.   
 

Work done by a force accelerating a particle changes the kinetic energy of the 
particle.  

 
 
 
  

Work may be done by or against a force due to a field.  For example, a 
charged particle moving in an electric field under the Coulomb force, or a 
mass moving in a gravitational field.  
 
In these cases we introduce the concept of potential energy.  The work done 
on the particle by the force is  
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 The work done by the particle is WBY = –WON  = EA – EB 
 
 In differential form, 

dErdFdW −=−=


.  
 
 

Potential Energy Curves 
 
 

We may write potential energy as a function of position, e.g. in one 
dimension, )(xEE = .  Then 

dx
dExF −=)(  

is the force acting on the particle.  Consequently, minima and maxima of the 
potential energy curve are points where F = 0 and a stationary particle will 
remain at rest.  The minima are stable (or metastable) and the maxima are 
unstable.  
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