
Section 2.  
 
Curvilinear Motion 
 
 The study of the motion of a body along a general curve.  
 
 We define Tû  the unit vector at the body, tangential to the curve 
 
   Nû   the unit vector normal to the curve 
 
  Clearly, these unit vectors change with time,  )(ˆ),(ˆ tutu NT  
 
   But, their lengths are always 1)(ˆ,1)(ˆ == tutu NT  
 
   And, we can always write a vector u  as NNTT uuuuu ˆˆ +=

  
 
 The velocity v  is always tangential to the curve, 
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 The acceleration a  is not always tangential to the curve: 
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  But what is 
dt
ud Tˆ ? 

 

  For straight-line motion, Tû  is constant, i.e. 0
ˆ
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ud T . 

 
  Otherwise, Tû  changes direction (not magnitude, always 1). 
 

Let the path of the body include a small arc length ds from the point A   
to the nearby point A′ , turning through a small angle dϕ.  That is, Tu′ˆ  
at A′  makes the angle dϕ with Tû  at A.  
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The normals to the curve at A  and A′  meet at a point C .  The 
distance to C  defines the radius of curvature R  of the arc.  
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That is, the acceleration has radial and tangential components: 
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  The radial component changes the direction of the velocity. 
 
 

• For uniform motion along the curve, aT = 0, so body moves at constant 
speed.  Velocity varies, with aR ≠ 0 

• For rectilinear motion, aR = 0, radius R is ∞. 

• These results are needed for planetary motion – a particularly important 
application.  

 

 

CIRCULAR MOTION 

Specialise to case where path is circular. 

  Since v is always tangential, v ⊥ radial direction 
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  ω is angular velocity, radians per second.  

In vector notation: 

Let r  be the position vector of the body from an arbitrary point on the 
axis, so that angle between r  and the axis ω  is γ .  Then  
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   and so   
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(Note - ω  is 
defined to have 
length ω) 



Acceleration: 

   Tangential:  
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The acceleration Na  is due to the centripetal force exerted on the body 
to keep it moving in a circle.  The centripetal force acts centrally, i.e. is 
always directed to the centre, and it is responsible for changing the 
direction of the motion.  It does not change the magnitude. 

 

As Action equals Reaction (Newton’s Law) it is perfectly correct and 
often convenient to consider the centrifugal force, which is the force 
the body exerts.  
 

 

Uniform circular motion: 
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Hence centripetal or centrifugal 
force, from F=ma, is 
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Tangential acceleration 

Angular acceleration 



In vector form: 
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  So ( )rva 
×ω×ω=×ω=  Centripetal acceleration in vector form 

   

 

 

 
 

MASS ON STRING  

 Mass m attached to centre by string length r, rotating in circle therefore 
of radius r, at angular velocity ω.  Neglect gravity. We may immediately write 
down the tension in the string:  

2ω== mRamT N
  

This is the (inward) centripetal force exerted by the string on the mass, 
responsible for the (inward) acceleration of the mass.  We may also identify 
the (outward) force (reaction) exerted by the mass on the string, the centrifugal 
force, responsible for the tension in the string.  

 
Other aspects of this problem will be investigated later.  

 
 

ROTATION OF THE EARTH  

The Earth rotates on its axis, with constant ω for the uniform circular 

motion of all points. Note 1secμrad72.72
606024

2 −=
××

π
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point A on surface at latitude λ .  The tangential velocity at A is 
mphcos1036cos463cos 1 λ=λ=λω=ω= −smRrv  

where R is the radius of the Earth (6370 km) and r is the distance of A from 
the axis of rotation.  

  The centripetal acceleration is  
222 cos034.0cos −λ=λω=ω= smrRaN  

 At the equator (λ = 0), this is 0.3% of g. 
 

= 0 
(uniform circular 

motion) 

Note:  A × (B × C) ≠ (A × B) × C 



 BANKED RAILWAY TRACK 
 

On curves (radius r), railway track is banked (“superelevated”) to 
supply centripetal force for trains running at speed v.  What is the required 
angle α of bank?  Required force is 

r
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This must be the horizontal component of the normal reaction of track on 
train, i.e. 

r
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But the weight of the train must equal the vertical component of the normal 
reaction of track on train, i.e. 
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 For typical values, v = 100 mph, r = 1 mile, 
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For the standard gauge of 4 ft 8½ in, this means the outer rail is lifted 
(“superelevated”) seven inches above the inner rail.  

 
Exercise:  What do the passengers feel in a train which is stationary on this 
curve?  In a train which goes round the curve at 150 mph?  

 



UNIFORMLY ROTATING FRAMES OF REFERENCE 

 Consider a stationary frame of reference S , coordinates ( )tzyx ,,,  and 
origin O , and a frame S ′ , rotating about the z-axis at a constant angular 
velocity ω  and with origin OO =′ , which therefore has a coordinate system 
( )ttzzyx =′=′′′ ,,, .  

 We want to derive relationships between the quantities such as 
position, velocity and acceleration measured in S ′  and measured in S . 

 Consider a body at a point A′  at rest in S ′ .  Clearly in S  the body is 
in circular motion and has a velocity  

rv 
×ω=  

If, however, the body, the point A′ , moves at v ′  with respect to frame 
S ′ , then vector addition of velocities gives its velocity in S  as 

 

 

 
And its acceleration? [Viewed from S] 

As always, we need only differentiate the velocity with respect to time to get 
the acceleration.  This can be done with vectors.  However, it is a tricky 
example of vector calculus and will be presented in MT2 (Semester B).   

The body has an acceleration in S ′  which we call a′ .  In S  we see 
additionally the centripetal acceleration r2ω− .  We see also the Coriolis 
acceleration if there is a radial component in v′ .   

 

 

 

 

 

 

 

 

 

The Coriolis acceleration can be derived without vector calculus: 

Consider the x-y planes of the stationary and rotating frames of reference; 
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CORIOLOIS FORCE 

Consider an air current flowing from the North Pole to the 
Equator.  It starts off with no East-West velocity.  As it flows 
south, the Earth turns under it to the East. (The sun rises in the 
East.)  If it underwent no eastward acceleration, by the time it 
reached the Equator it would constitute a 1000mph East wind.  
From the Earth as a frame of reference, it would appear that large 
westward forces had been exerted on it. This is the Coriolis force.  
Like centrifugal force, it is termed fictitious.   

 



 

 

 

 

 

 

At t=0: x is aligned with x′, y is aligned with y′ 

At t=0 let us project a particle radially outwards from the centre to P′ in S′ at t 
= 0 to a point P′  at a radius r at time t.   
 

At time t, the particle reaches P′ and its radial velocity is 

t
rvR =′ . 

From the point of view of S  it started moving towards a point P  coincident 
with P′  at t = 0 then follows the trajectory in red in the above diagram.  When 
it reaches P′ , that point is now a distance ωrt away from P  tangentially.  The 
body started with no tangential velocity (at the centre.  So from the point of 
view of S  it has accelerated tangentially, and using  
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and putting in the values, we have 
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The Coriolis force is tangential, and  independent of radius, so it acts even at 
the centre. 
 
 

Ficticious forces (sometimes called pseudo-forces) 

Not from physical interaction but result from the acceleration of a non-inertial 
frame of reference. We have encountered two: 

Centrifugal acceleration acts radially, )(2 2 rraR
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Coriolis acceleration acts tangentially, vva RT
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MOTION RELATIVE TO EARTH 

Falling Bodies – Centrifugal Term:  

Let 0g  be acceleration due to gravity if Earth didn’t rotate (i.e. gravity as 
viewed from S ).  

Then the effective gravity, gravity as viewed from the Earth’s rotating frame 
S ′ , is 

)'(0 rgge


××−= ωω  

These are not parallel, with 0g  pointing towards the centre of the Earth, and 
the centrifugal term pointing outwards from the Earth’s axis.  So gravity is 
reduced and tilted towards the Equator.   

Bodies falling towards the ground in the Northern hemisphere are displaced to 
the South, while bodies falling in the Southern hemisphere are displaced to the 
North. 

The displacement vanishes at the Poles and at the Equator.  
 

Coriolis Term:   
That only applies to bodies that have no velocity in the Earth’s frame.  Let the 
body be falling vertically at velocity v′ .  Then Coriolis term is '2 v

×− ω , 
which points East in both hemispheres. 

The displacement vanishes at the Poles and is maximum at the Equator.  
 

Bodies with Tangential Velocity: 

Northward in Northern hemisphere, v ′×− ω2  points to the East, and the 
motion is deflected to the East.  Northwards in Southern hemisphere, 

v ′×− ω2  points to the West and the motion is deflected to the West.  

The effect is maximum at the Poles and  vanishes at the Equator. 
 

Consequences of the Coriolis Froce for the Weather: 
1. Cyclones.  A region at low pressure tends to fill as air flows in radially, at 

right angles to the contours of constant pressure (isobars).  The Coriolis 
force deflects the radial motion, to the right in Northern hemisphere (and 
to the left in Southern hemisphere). This sets up an anti-clockwise rotation 
(clockwise in Southern).  A cyclone becomes stable when the air flow is 
parallel to the isobars.  Look for this on weather maps.  

2. Trade Winds.  The largest scale pattern in the atmosphere is the 
convection of heat from the Equator to the Poles, with cold air returning 
South at sea-level.  This current of air is deflected to the West (in both 
hemispheres), so that the most stable wind patterns are the Trade Winds, a 
North-East wind in the Northern hemisphere and a South-East wind in the 
Southern hemisphere. Look for these on weather maps. 
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