Energy from nuclear fission

Carbon-free 1 tonne uranium (U) delivers equivalent energy to 20,000 tonnes of coal Average U concentration in Earth's crust is 2.8 ppm About 50 years U supply at present rate of consumption

Exploits decay of unstable nuclei, e.g.

 $^{14}\text{C} \rightarrow {}^{14}\text{N} + \text{e}^- + \bar{\nu}$

Beta-day, half-life=5730 years, used in radiocarbon dating.

Binding energy and stability factors: nucleon binding by short-rage attractive force, electrostatic repulsion of protons, neutron-proton pairing, nucleons on exterior of nucleus vs. number in interior,...

Expect binding energy of nucleus to be proportional to *A*, i.e. binding energy per nucleon b(A) constant. But find there is a maximum at $A \sim 60$ (⁵⁶Fe).

Decrease for A>60 due to electrostatic repulsion between protons. Decrease for A<60 more nucleons on the surface of the nucleus therefore less bound.

Energy released by fission of a heavy nucleus or fusion of two light nuclei.

E.g. Uranium (mass number A_1) splits into two lighter nuclei (with mass numbers A_2 and A_3) giving off two neutrons. These nuclei will be neutron rich relative to stable nuclei with the same mass number so undergo beta-decays until stable nuclei are reached. The emitted neutron are absorbed by a nucleus resulting in an energy release equal to the binding energy of the neutron (approximately b(A)).

The nucleon in the lighter nuclei are more tightly bound than in the U nucleus so the total energy release $E_{\rm R}$ is approximately given by,

 $E_{\text{R}}=A_2[b(A_2)-b(A_1)]+A_3[b(A_3)-b(A_1)]$

In beta-decays, some energy is taken by the neutrinos, which interact very weakly with matter, the remainder is deposited in the surrounding material.

Ex. N1. Calculate the energy release when ²³⁵*U fissions resulting in two lighter stable nuclei with mass numbers 140 and 93 (b(235)=7.6 MeV, b(140)=8.35 MeV, b(93)=8.7 MeV).*

*Ex. N2. Calculate the energy released when deuterium*²*H and tritium*³*H fuse to form*⁴*He with the release of a neutron*

 $^{2}\mathrm{H}+\ ^{3}\mathrm{H}\rightarrow\ ^{4}\mathrm{H}+n$

(b(2)=1.1 MeV, b(3)=2.6 MeV, b(4)=7.1 MeV).

Neutron-induced fission

Uranium is stable w.r.t. deformation on its equilibrium shape:

Probability of uranium fission is increased enormously when uranium nucleus captures a neutron

 $n + {}^{235}U \rightarrow {}^{236}U^*$

The energy of the excited 236 U* is above the height of the energy barrier $E_{\rm f}$ and can therefore fission promptly. By contrast,

$$n + {}^{238}U \rightarrow {}^{239}U^*$$

the energy of the excited 239 U* is below the height of the energy barrier $E_{\rm f}$ and cannot therefore fission promptly. This is because the neutron is more tightly bound in 236 U than 239 U.

Example of neutron-induced fission of ²³⁵U:

The energy from fission can be divided into **prompt release** and **delayed release** following beta-decay. Examples of beta-delayed neutron emission:

These are very important in controlling the chain reactions in a nuclear reactor.

A **chain reaction** is possible if at least one of the released neutrons induces fission of other nuclei.

Ex. N3 How much energy is released when 1 kg of uranium enriched to $3\%^{235}U$ is consumed in a nuclear reactor?

Chain reactions

The neutrons with energies in the range eV (thermal neutrons) - MeV undergo scattering, capture, and induced fission with probability expressed as a cross-section, σ (units: barns(b), 1 barn = 10^{-28} m²). The cross-section of a uranium nucleus is ~2b [NB this is much greater than the cross-sectional area of the nucleus]

Neutron absorption cross-section is the sum of the capture and neutron-induced fission crosssections,

$$\sigma_{\rm a} = \sigma_{\rm c} + \sigma_{\rm f}$$

Neutron moving with speed *v* though uranium with n_f^{235} U nuclei per unit volume then in one second the neutron will sweep out a volume $\sigma_f v$:

If there are n neutrons per unit volume then the fission reaction rate per unit volume is:

$$R_{\rm f} = n_{\rm f} \sigma_{\rm f} v n = \Sigma_{\rm f} \varphi$$

Where $\Sigma_{f}\varphi$ (units: m⁻¹) is called the **macroscoptic cross-section** for neutron induced fission. The **neutron flux** is given by the product *nv* (typival value= 10^{17} m⁻²s⁻¹)

Moderators

The average energy of neutrons produced by fission needs to reduced by many orders of magnitude to reach thermal energies (meV – eV). This is done by making the fuel in the form of rods and surrounding with a moderator material.

Pressurised water reactor (PWR)

(From AJ, chapter 8)

Sodium-cooled fast reactor

High temperature gas cooled reactor

(From AJ, chapter 8)

Nuclear waste

High level: waste generated in reactor core; half-life 10^5 - 10^6 years; liquid high level waste stored underground for 50 years then vitrified; vitrified waste then sealed in steel containers and put in stable geological repositories.

Intermediate level: intense radioactivity; solidified and stored in containers with concrete shielding.

Low level: low intensity radioactivity; suitable for shallow burial.